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ABSTRACT. We give a survey of some recent results concerning geometric and topological
properties of 3-Sasakian manifolds and the réle played by such manifolds in the context of
quaternionic Kahler and hypercomplex geometry.

Introduction

In 1960 Sasaki [Sasl] introduced a geometric structure related to an almost contact
structure. This geometry became known as Sasakian geometry and has been studied
extensively ever since. Today the importance of Sasakian manifolds is recognized in many
different areas of Riemannian geometry. In the late sixties Kuo [Kuo] and Udrigte [Ud]
refined this notion and introduced manifolds with Sasakian 3-structures. A 3-Sasakian
manifold (S, g) is a (4n + 3)-dimensional Riemannian manifold with three orthonormal
Killing vector fields {¢ i}izl,z’g satisfying the Lie algebra sp(1) along with certain curvature
conditions. This provides & with a 3-dimensional foliation F3. If the 3-Sasakian vector
fields {¢'};—1 23 are complete, there is a locally free action of Sp(1) on S, and we say
that S is regular if the foliation Fj3 is regular. From 1970-1975 this new kind of geometry
was investigated almost exclusively by Japanese school. There are two main properties
of 3-Sasakian manifolds that make them a particularly interesting object of study. First,
they are Einstein spaces of positive scalar curvature [Ka]. Secondly, Konishi and Ishihara
[IKon| noticed that if a 3-dimensional foliation Fj is regular then the space of leaves has
the structure of a 4n-dimensional quaternionic Kahler manifold M with positive scalar
curvature. In particular, the restricted holonomy group of such M reduces to a subgroup
of Sp(n) - Sp(1). Conversely, Konishi [Kon] proved the existence of a Sasakian 3-structure
on a natural principal SO(3)-bundle over any quaternionic Kahler manifold of positive
scalar curvature.

Early results of Ishihara and Konishi clearly demonstrate that there is at least one 3-
Sasakian manifold associated to every compact quaternionic Kahler space of positive scalar
curvature. Yet until recently, for unclear reasons, manifolds with 3-Sasakian structure were
relegated to a relative obscurity. In the last few years they resurfaced independently in
two different areas. In 1990 Friedrich and Kath studied compact Riemannian 7-manifolds
admitting three Killing spinors showing that this condition is equivalent to the existence of
a 3-Sasakian structure [FrKat]. Assuming regularity they were able to combine the result
of Hitchin [Hi] and Friedrich and Kurke [FrKur| and obtain a classification of all regular
complete 7-manifolds with 3-Sasakian structure.

During the preparation of this work all three authors were supported by NSF grants.
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More recently, in [BGM1] we found that 3-Sasakian manifolds provided a natural
piece of a puzzle that links together four different geometric structures. In particular,
for any compact quaternionic Kahler manifold M of positive scalar curvature there is a
commutative diagram

Z/{ ~ R_|_ X S
C /7, R/Z,
0.1 Z H/Z, S,
P RP
¢ N
M

where U is the cone on § with a canonical hyperkéhler structure (the Swann bundle [Sw]),
Z is Kéhler-Einstein (the twistor space [Sall-2]), and S is 3-Sasakian (the Konishi bundle
[Kon]). In addition, both Z and S are compact, of positive scalar curvature, and S is
a principal circle bundle over Z. It is important to observe that all four geometries in
diagram 0.1 are Einstein.

In 1982 generalizing Penrose’s twistor construction in 4 dimensions, Salamon showed
that every quaternionic Kahler manifold of positive scalar curvature has an auxiliary com-
plex manifold known as the “twistor space”. In a sense, diagram 0.1 shows that every
positive quaternionic Kahler manifold has not one auxiliary space but three different yet
related auxiliary spaces. This is what originally motivated our interest in the geometry
and topology of 3-Sasakian manifolds. This article surveys several new results presented
earlier in [BGM1-7, GS] as well as many older results in the subject. After setting our
notation and introducing necessary definition we first show how Ishihara and Konishi’s
results generalize to the case of orbifold fibration [BGM1,2|. In particular, we summarize
many known facts about the geometry and topology of 3-Sasakian manifolds in section 1.
In section 2 we discuss all known examples of compact regular 3-Sasakian manifolds and
present the classification of compact 3-Sasakian homogeneous spaces. We briefly describe
some relations between Betti numbers of spaces in diagram 0.1 [GS]. Section 3 introduces
the 3-Sasakian quotient construction [BGM1,2] which can be applied to obtain a family of
inhomogeneous, irregular 3-Sasakian manifolds. In particular, these are the only explicit
examples of manifolds with Einstein metrics of positive scalar curvature and of arbitrary
cohomogeneity. Section 4 describes a new construction of hypercomplex structures on cer-
tain circle bundles over 3-Sasakian manifolds. The method yields a very interesting family
of inhomogeneous hypercomplex structures on complex Stiefel manifolds of 2-frames in
C™. Finally, the last section describes how 3-Sasakian manifolds enter naturally into the
study of locally conformally hyperkahler spaces.

Update: For further developments in the area, see [BG,BGM9-10,BGMR1-2].

1. Sasakian 3-Structure and Quaternionic Kéahler Orbifolds

We begin this section with the definition of a Sasakian structure and some of it basic
properties.



DEFINITION 1.1: Let (S,g) be a Riemannian manifold and let V denote the Levi-Civita
connection of g. Then (S, g) has a Sasakian structure if there exists a Killing vector field
¢ of unit length on S so that the tensor field ® of type (1,1), defined by

(4) O(X) = Vx¢

satisfies the condition

(i) (Vx®)(Y) = n(Y)X —g(X,Y)¢

for any pair of vector fields X and Y on §. Here n denotes the 1-form dual to & with
respect to g; i.e., g(Y,&) = n(Y) for any vector field Y, and satisfies the dual equation to
(i); namely,

) (Vxn)(Y) = g(¥, ®X).

We write (®,&,n) to denote the specific Sasakian structure on (S, g) and will refer to S
with such a structure as a Sasakian manifold.

PROPOSITION 1.2: Let (S,g,£) be a Sasakian manifold and X and Y any pair of vector
fields on S. Then

(i BoB(Y) = Y +n(Y)E,
(i) ¢ = 0,

(122) n(®Y) = 0,

(iv) g(X,®Y) + g(®X,Y) = 0,
(v) g(®Y,@2) = g(Y,Z) —n(Y)n(Z),
(vi) dn(Y,Z) = 2g(3Y, 2).

Furthermore, the Nijenhuis torsion tensor

No(Y,Z) = [®@Y,®Z]+ ®*[Y, Z] — ®[Y, ®Z] — ®[®Y, Z],
of ® satisfies
(vit) Ng(Y,Z) = —dn(Y,Z) ®¢.
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DEFINITION 1.3: Let (S, g) be a Riemannian manifold that admits three distinct Sasakian
structures {®%, £%, n®}4=12,3 such that

g(é-a’é-b) — 5ab and [é-a’gb] — 2€ab(1£c

fora,b,c =1,2,3. Then (S, g) is a 3-Sasakian manifold with Sasakian 3-structure (S, g,£%).

It follows directly from the definition that every 3-Sasakian manifold admits a local
action of either Sp(1) or SO(3) as local isometries and, if the vector fields £* are complete,
then these are global isometries. We refer to this action as the standard Sp(1) action on
S. It is well-known that every 3-Sasakian manifold (S, g,£®) has dimension 4n + 3 and is
foliated by Riemannian foliations

(1.4) Fi{ C Fs, T € sp(1),

of codimensions 4n + 2 and 4n respectively. The foliation F7 is defined by a choice of the
circle subgroup U(1), C Sp(1) generated by the Killing vector 7 € sp(1), where sp(1) the
Lie algebra of Definition 1.2 with generators {¢1, £2,£3}. Notice that F7 depends only on
the direction of 7 and not on its norm, and gives S the structure of a Seifert fibration over
the twistor space Z.
DEFINITION 1.5: A 3-Sasakian manifold is said to be regular if the foliation F3 is regular.
Note that if the foliation F3 is regular then F7 is regular for all 7. But the converse
is also true, more precisely if the vector fields &° are complete and any of the foliations
T is regular than so is F3 [Tan2, TachYu]. In the regular case we obtain a diagram of
locally trivial fibrations introduced in (0.1). More generally the arrows in (0.1) should be
interpreted in the sense of V-bundles (or orbifold bundles) [Sat, Bail-2].
Some of the basic properties of 3-Sasakian manifolds together with there foliations
F{ C F3 are summarized in the theorem below.
THEOREM 1.6: Let (S, g,£%) be a 3-Sasakian manifold of dimension 4n + 3 such that the
Killing vector fields £€* are complete for a = 1,2,3. Then

(i) (S,g,£%) is an Einstein manifold of positive scalar curvature equal to 2(2n+1)(4n+3).
Hence, every complete 3-Sasakian manifold is compact and has finite fundamental
group.

(ii)) S admits a second Einstein metric g’ of positive scalar curvature which is not homo-
thetic to g.

(iii) The metric g is bundle-like with respect to all of the foliations F{ and Fs.

(iv) Each leaf L of the foliation F3 is a 3-Sasakian submanifold that is totally geodesic
and of constant curvature 1. Furthermore, L is diffeomorphic to a 3-dimensional
homogeneous spherical space form.

(v) The space of leaves O = §/F3 is a quaternionic Kahler orbifold of dimension 4n with
positive scalar curvature equal to 16n(n + 2).

(vi) The space of leaves Z = S/F] is a complex orbifold of complex dimension 2n + 1
that is independent of T and has a Kahler-FEinstein metric of positive scalar curvature
8(2n+1)(n+1). Furthermore, Z is the twistor space of O, and is a projective algebraic
variety.



(vii) The product manifold M = S xRt with the cone metric gas = dr?+r2g has holonomy

Sp(n + 1), that is, the metric gpr is hyperkéhler.

The fact that every 3-Sasakian manifold § is Einstein and has positive scalar curvature
2(2n 4+ 1)(4n + 3) is due to Kashiwada [Ka]. That & admits a second Einstein metric is
a consequence of the canonical variation [Bes] and was given in [BGM2]. The notion of
a bundle-like metric is due to Reinhart [Rei]. That each leaf of F3 is a totally geodesic
3-Sasakian manifold of constant curvature 1 is due to Kuo and Tachibana [KuTach], and
that all 3-Sasakian 3-manifolds are precisely the homogeneous spherical space forms is due
to Sasaki [Sas2]. The regular case of (v) is due to Ishihara and Konishi [IKon,I2], whereas
the general case appears in [BGM2]. (vi) is given in [BGM1,BGM2] and the proof that Z
is a projective algebraic variety is given in [BG]. (vii) is given independently in [Béar| and
[BGM2].

We now recall some old results about harmonic forms on compact Sasakian manifolds
due to Tachibana [Tach]. Consider {S,g,&} such that dimS = 2m + 1, let AP(S) be the
space of p-form on S, and let HP(S)the vector space of harmonic p-forms. We have
THEOREM 1.7 [TAcH]: If p < m then u € HP(S) is horizontal with respect to the
distribution F; defined by the Killing vector &, i.e., £|u = 0.

Now, using ® we can define an operator ® : AP(S) — AP(S) by

(1.8) (®u)(X1, Xa, ..., Xp) = Z’u,(Xl, L B(X), . .,Xp).
i=1

Then we have

THEOREM 1.9 [TAcH]: If p < m and u € HP(S) then du € HP(S).

Applying these two results to the 3-Sasakian case in combination with the fact that
harmonic forms must be invariant under the Sp(1) action [YB] one obtains the following
vanishing theorem:

THEOREM 1.10 [GS]: Let (S, g,£%) be a compact 3-Sasakian manifold of dimension 4n—+ 3.
Then the odd Betti numbers bag41(S) = 0 if k < n.

2. Regular Case

As every compact regular 3-Sasakian manifold fibers over a compact positive quater-
nionic Kahler manifold the two geometries are intimately related to one another. In
particular, we always have the diagram of fibration

Sl
S — Z.
(@2
2.1 RP %
M

The RP3-bundle over M can be lifted to an S3-bundle only in one case, when M =
HP", which follows from the result of Salamon [Sall]. In particular we have
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THEOREM 2.2 [BGM1]: Let (S, g,£%) be a regular compact 3-Sasakian manifold of dimen-
sion 4n + 3. Then ,(S) is of order at most 2 and ©11(S) = Zy if and only if S ~ RP4"+3,
Applying standard Gysin sequence arguments to the fibration of diagram 2.1 we find
that the Betti numbers of S can be regarded as “primitive Betti numbers” of both M and
Z. In particular
THEOREM 2.3 [GS]: Let (S, g,£%) be a compact regular 3-Sasakian manifold of dimension
4n + 3 with quotients M, Z as in diagram 2.1. Then
(1) bgk(S) = bgk(Z) - bgk_Q(Z), k S n.
(11) bgk(S) = bgk(M) — bzk_4(M), k S n.
We now consider homogeneous 3-Sasakian spaces. To begin we recall some old results
of Tanno [Tanl]. First, notice that the Killing vector fields &1, &2, and ¢2 which give a
Riemannian manifold (S, g) a 3-Sasakian structure generate non-trivial isometries. Thus,
every 3-Sasakian manifold (S, g,£%) has a nontrivial isometry group I(S, g). Let Iy(S, g)
denote the subgroup of I(S, g) consisting of those isometries that leave the tensor fields
&% invariant for all a = 1,2,3. We refer to elements of Iy(S, g) as 3-Sasakian isometries.
The following theorem was proven by Tanno.
THEOREM 2.4 [Tanl] Let (S,g,£*) be a complete 3-Sasakian manifold which is not of
constant curvature. Then

dim I(S,g) = dim Iy(S,g) + 3.

Furthermore, the Killing vector fields £* generate the three dimensional subspace of
isometries that are not 3-Sasakian isometries. Let i and iy denote the Lie algebras of
I(S,g) and Iy(S, g), respectively. Hence, Tanno’s theorem says that if (S, g) is not of
constant curvature, then

2.5 i=1p+sp(1),

where + indicates vector space direct sum. However, more is true, namely
LEMMA 2.6: The direct sum in equation 2.5 is a direct sum of Lie algebras, i.e.,

i=1p®sp(1).

Using the well-know theorem of Alekseevski [A] which asserts that every compact
positive homogeneous quaternionic Kahler manifold has to be symmetric, together with
the classification of the quaternionic Kahler symmetric spaces obtained by Wolf [Wo], one
can prove the following result [BGM2]:

THEOREM 2.7: Let (S,g,&%) be a compact 3-Sasakian homogeneous space. Then S is
precisely one of the following:

Sp(n) ~ gin—1 Sp(n)

— ~ RpP*!
Sp(n —1) ’ Sp(n —1) x Zs ’

SU(m) SO(k)
S(Um-2)xU(1))’ SO(k — 4) x Sp(1)’




Go Fy Eg Er Eg

Sp(1)’ Sp(3)’ SU(6)’ Spin(12)’  E;

Here n > 1, Sp(0) denotes the trivial group, m > 3, and k > 7. Furthermore, the fiber
F over the Wolf space is Sp(1) in only one case which occurs precisely when (S, g,£%) is
simply connected with constant curvature; that is, when S = S*"~'. In all other cases
F =5S0(3).

The proof is based on an observation that every 3-Sasakian homogeneous space must
be regular. Now, Theorem 2.7 implies that any homogeneous 3-Sasakian manifold has to be
either 3-Sasakian homogeneous or it is covered by a sphere which reduces the classification
of all homogeneous spaces to considering all discrete quotients of S***3 which preserve
the standard 3-Sasakian structure.

In dimension 4 there are only two compact quaternionic Kahler manifolds of positive
scalar curvature: the round sphere S* and the complex projective plane CP? with the
SU (3)-invariant Fubini-Study metric. This result is due to Hitchin [Hi] and Friedrich
and Kurke [FrKur]. (In dimension 4 quaternionic Kdhler is equivalent to self-dual and
FEinstein). In particular both manifolds are symmetric. The latter is also true in dimension
8, where there are only three models of compact positive quaternionic Kahler manifolds:
HP?, Grs,4(C), and G2/S0O(4) [PoSal]. Using these two classification results we can classify
all compact regular 3-Sasakian manifolds in dimension 7 and 11. We have
THEOREM 2.8 [BGM1]: Let S be a compact regular 3-Sasakian manifold. Then,

1. if S has dimension 7, then S is either S7, RP7, or SU(3)/U(1).
2. if S has dimension 11, then S is either S11, RP1! SU(4)/S(U(2)xU (1)), or Go/SU(2).

Part (i) of Theorem 2.8 was obtained earlier in [FrKat, BFGK]. It would be very
interesting to extend this classification to the case when the foliation F3 is not regular.
However, we shall see in the next section that such a classification is much more difficult.
Both the topology and the geometry are less restricted in such cases and infinitely many
homotopy types occur in any allowable dimension. Even though 3-Sasakian and quater-
nionic Kahler geometries are very much related the latter seems to be much more rigid.
Many of the results of LeBrun and Salamon that hold for positive quaternionic Kahler
manifolds [Lel, Le2, LeSal, Sal3] do not hold in the case of compact 3-Sasakian spaces
[BGMRI1]. In general, the strong rigidity results of [LeSal] can be translated into the
3-Sasakian language only in the regular case [GS].

3. 3-Sasakian Reduction and Inhomogeneous 3-Sasakian Manifolds

In [BGM2] we described a 3-Sasakian version of the reduction procedure analogous
to the symplectic reduction of Marsden and Weinstein [MW], hyperkéhler reduction of
Hitchin et al. [HKLR], and quaternionic reduction of Galicki and Lawson [GL]. Let
(S,9,£%) be a 3-Sasakian manifold with a connected compact Lie group G acting on
S by 3-Sasakian isometries; that is, isometries that commute with the vector fields £ for
a =1,2,3. One can define a unique 3-Sasakian momentum mapping

p:S — g*®R?,
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where g* is the dual of the Lie algebra of G, by setting
1
< ptT> = 577“(XT),

where 7 € g, X7 is the corresponding infinitesimal 3-Sasakian isometry, and < -,- > de-
notes the natural pairing on gx g*. Using standard techniques for Riemannian submersions
one has

THEOREM 3.1 [BGM2]: If § = 1~ '(0)/G is a smooth manifold then it has a natural
3-Sasakian structure induced by the inclusion map ¢ : p~1(0) — S and the projection
map m : = 1(0)—8.

REMARK: In discussions with D.V. Alekseevski we noticed that it follows from a result
of Ishihara and Konishi [IKon| that, if G is one-dimensional then 0 is always a regular
value of the moment map p. Thus, if G is a circle subgroup of the group of 3-Sasakian
isometries which acts freely on p~='(0), the quotient 4 =1(0)/G will be a manifold.

One can use Theorem 3.1 to construct examples of compact simply connected irreg-
ular 3-Sasakian manifolds. To begin take S = S%*~1(1) to be the round unit sphere of
dimension 4n — 1. This is well-known to carry a Sasakian 3-structure coming from the
canonical embedding S%"~! C H". The group of 3-Sasakian isometries is Sp(n) C SO(4n)
and we take G = U(1)p, to be in the maximal torus T™ in Sp(n) contained in U(n) C Sp(n),
acting with weights p. If u = (uq,...,u,) € H" is the quaternionic coordinate system on
the sphere then 7™ can be represented as diagonal matrices and the momentum map can
be written as

n
3.2 ,U(u) = Zpaﬂaiuaa
a=1

where w denotes the quaternionic conjugate of w € H and “” is the quaternionic unit
defining the inclusion U(n) C Sp(n). When the weights are chosen to be pairwise coprime
then the quotient & = ~1(0)/S* = S(p) is a smooth manifold with a natural Sasakian 3-
structure given by Theorem 3.1. For any such p we identify the level set of the momentum
map

3.3 N(p) = p~0) € 841

U(n)
U(n—2)°

manifold § = S(p) with the bi-quotient of U(n) by U(1) x U(n —2) < U(n)? =
U(n)r x U(n)g, where the action is given by the formula

with the complex Stiefel manifold V5 = via a smooth map F, and the quotient

Tpl

(r,.B) ] I, O
3.4 W — . W(O B).

Tpn
Here W € U(n) and (7,B) € U(1) x U(n — 2).
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In particular, the metric §(p) on S(p) is obtained explicitly and we have the following
diagram

Uy = VS Fyp) ~ WND.90) = (57 o)

3.9

S
z
I

S(p)/Fs.

Equivalently, S(p) is the quotient of the complex Stiefel manifold V,g of 2-frames in

C™ by the specific free left circle action which depends on p. Here are some of the results
which describe the geometry and topology of these examples.
THEOREM 3.6 [BGM2]: Let n > 3 and p = (p1,..-,Pn) € Z7% be an n-tuple of non-
decreasing, pairwise relatively prime, positive integers. Then S(p) is a compact, simply
connected, (4n — 5)-dimensional smooth manifold which admits an Einstein metric §(p)
of positive scalar curvature and a compatible Sasakian 3-structure. In addition, S(p) ad-
mits a second Einstein metric of positive scalar curvature, g'(p), which is non-homothetic
to §(p). Furthermore, both (S(p),9(p)) and (S(p),¢'(p)) are inhomogeneous Einstein
manifolds as long as p # (1,...,1).

In fact, the computation of the connected component of the isometry group of the
metric §(p) shows that, depending on p, one can construct metrics of arbitrary cohomo-
geneity. More precisely we have

THEOREM 3.7 [BGM3|: Let I be the group of 3-Sasakian isometries of (S(p), g(p)) and
let k be the number of 1’s in p. Then the connected component of Iy is S(U (k) x U (1)),
where we define U(0) = {e}. Thus, the connected component of the isometry group is the
product S(U (k) x U(1)"~F) x SO(3) if the sums p; + p; are even for all 1 < i, j < n, and
S (k) x U(1)"*) x Sp(1) otherwise.

In the case that p has no repeated 1’s, the cohomogeneity can easily be determined,
viz.
COROLLARY 3.8 [BGM3]: If the number of 1’s in p is 0 or 1 then the dimension of the
principal orbit in S(p) equals n+ 2 and the cohomogeneity of §(p) is 3n— 7. In particular,
the 7-dimensional S(p) family contains metrics of cohomogeneity 0,1, and 2.

We are not aware of any other explicit examples of positive scalar curvature Einstein
metric with cohomogeneity greater than 1.

Using techniques developed by Eschenburg [E] in the study of certain 7-dimensional
bi-quotients of SU(3) one can compute the integral cohomology ring of S(p).

THEOREM 3.9 [BGM2]: Let n > 3 and p = (p1,..-,pn) € Z7} be an n-tuple of non-
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decreasing, pairwise relatively prime, positive integers. Then, as rings,

H*(S8(p),2) = ([bg[b:ﬂO] ®E[f2n—1]> /R(P)-

Here the subscripts on by and fs,_1 denote the cohomological dimension of each generator.
Furthermore,
1. The relations R(p) are generated by oy, _1(p)by ™' = 0 and fa, 105" = 0.
2. 0p1(P) = D5y p1 Py P is the (n — 1)°" elementary symmetric polynomial in
the entries of p.
Notice that Theorem 3.9 shows that H**~2(S(p);Z) = Z
following corollary.
COROLLARY 3.10 [BGM2]: Both (S(p), g(p)) and (S(p), g'(p)) give infinitely many non-
homotopy equivalent simply-connected compact inhomogeneous Einstein manifolds of pos-
itive scalar curvature in dimension 4n — 5 for every n > 3.

on_1(p) and hence has the

To illustrate just how far some of these examples are from homogeneous Einstein
geometry we consider the 7-dimensional case S(pi1,p2,ps). The following theorem is a
generalization of a result of Eschenburg [E].

THEOREM 3.11 [BGM2]: Let S(p) be any 3-Sasakian space defined above, with n = 3.
Then either S(p) is homotopy equivalent to a homogeneous Aloff-Walach space My, =
SU(3) /Ty, where ged(k,l) = 1 and Ty acts as diag(r*, 7', 7**) c SU(3), or S(p) is
strongly inhomogeneous, i.e. it is not homotopy equivalent to any compact Riemannian
homogeneous space.

Since H*(My;,Z) is a cyclic group of order k2 + (2 + kl and for k, [ relatively prime is
never equal to 2 mod(3) we have, among S(p), many families of strongly inhomogeneous
examples. In particular

COROLLARY 3.12 [BGM2]: S(¢,c+ 1,¢+ 2) is strongly inhomogeneous for every positive
odd integer c. Similarly, §(d,d + 3,d + 5) is strongly inhomogeneous for every positive
integer d =2 (mod 6) such that d is not divisible by 5.

Theorem 3.11 has an analogue for any n > 3 with Mj; being replaced by another
family of SU(n)-homogeneous spaces [BGM3].

4. Hypercomplex Geometry of a Circle Bundle over 3-Sasakian Manifold

A hypercomplex structure on a smooth manifold M is a G-structure where G =
GL(n,H) that admits a necessarily unique torsion free connection, the Obata connection
[Bon,Ob]. In particular, every such M has three complex structures I, .J, and K which
satisfy the relations of the algebra of imaginary quaternions and thus generate an entire
two-sphere’s worth of complex structures on M. Until recently, there were few known exam-
ples of compact, irreducible, hypercomplex manifolds in dimension 8 and higher. The first
class of such examples are the hyperkahler twisted products of K3 surfaces constructed
by Beauville [Bea]. Examples of hypercomplex manifolds that are not hyperkahler were
very scarce, the simplest ones being the Hopf manifolds $4"*3 x S! which are locally
conformally hyperkédhler. Recently the authors [BGM2] gave a class of new compact lo-
cally conformally hyperkihler manifolds by replacing $4**2 with any 3-Sasakian manifold.
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Similar examples involving the quaternionic Heisenberg group were found by Hernandez
[Her]. None of these examples, however, are simply connected.

In contrast to the 4-dimensional case, where all compact hypercomplex manifolds
are locally conformally hyperkéhler [Boy]|, in higher dimensions this is no longer true. A
class of hypercomplex manifolds that are not locally conformally hyperkahler was stud-
ied by physicists interested in supersymmetric o-models. In this regard, Spindel et. al.
[SSTP] classified compact Lie groups which admit hypercomplex structures. This is the
generalization to the hypercomplex category of the classic work of Samelson [Sam| and
Wang [W] on the classification of compact Lie groups [Sam] and homogeneous spaces [W]
admitting complex structures, respectively. Using different methods, Joyce [Joyl] later
recovered this [SSTP] classification and developed a theory of homogeneous hypercomplex
manifolds which generalizes Wang’s [W] result.

In this section we will describe a new construction of compact hypercomplex manifolds
using 3-Sasakian geometry. We then use these techniques to obtain uncountably many
distinct hypercomplex structures on certain Stiefel manifolds. However, the construction
can be used to obtain many other new examples [BGMS8]. Let 7 : P — S be a circle
bundle over S and let § be a Riemannian metric on P such that 7 : (P,g) — (S,g) is a
Riemannian submersion. Let V; denote the vertical subbundle of the tangent bundle T'P
to P. Let Z be a nowhere vanishing smooth section of V; that generates the S* action on P.
The almost contact 3-structure on S allows us to define an almost hypercomplex structure
on P as follows. The metric § on P splits the tangent bundle TP as TP ~ H & V; and
7, induces an isometry between the horizontal vector space H, at a point p € P and the
tangent space Ty (,)S. For any vector field X on S, we denote by X its horizontal lift to P,
that is, X is ‘the unique basic vector field that is m-related to X. In particular, the three
vector ﬁelds §"' generate a subbundle Vs of H that is isometric at every point to the bundle
VsonS. Let H denote the orthogonal complement to V3 in 7-[ so that we have the further
splitting TP =~ Ho Vi ~ ’H ® V3 @ V1. Since the ®? ’s are sections of End H @ End V3
on S they li lift to sections ®* of End H & End V3 on P defined on basic vector fields by
$*X = ®2X and extended to arbitrary sections of End H & End Vg by linearity. Hence,
we can define endomorphisms Z¢ on TP by

4.1 I°X = —9°X + " n%*(X)2 and I°E = —£°9,

where X is any horizontal vector field on P. One easily sees that this defines an almost
hypercomplex structure on P which is, in general, not integrable. We shall denote by
H(S) this circle bundle with its almost hypercomplex structure.

THEOREM 4.2 [BGM4]: Let H(S) be a circle bundle over a 3-Sasakian manifold S, and
let 2 be a nowhere vanishing vertical vector field on H(S) which generates the circle
action. We call the pair (H(S),E) a framed circle bundle on S. The almost hypercomplex
structure given above is integrable if and only if the horizontal subbundle # defines a u(1)
connection with curvature 2-form w and the following three conditions hold:

(i) w(é®, &%) =0 for any a,b=1,2,3.

(i) w(é“, X) =0 for all a = 1,2,3 and any section X of H.
(iii) w((i)“)z', @“f’) = w(X, }7) for all a = 1,2, 3 and for any sections X,Y of H.
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We first apply this theorem to the homogeneous case. Recall that a complex manifold
M is called a homogeneous complexr manifold if there is a transitive action of a real Lie
group on M that acts by biholomorphic diffeomorphisms. We now define a homogeneous
hypercomplex manifold to be a manifold that admits a transitive action of a real Lie group
that preserves the hypercomplex structure.

THEOREM 4.3: Let H(S) be a circle bundle over a 3-Sasakian homogeneous space with
almost complex structure given by 4.1 and satisfying the conditions of Theorem 4.2. Then
H(S) is a compact homogeneous hypercomplex manifold. Moreover, H(S) is precisely
one of the following manifolds: 8 x S*, Hy(RP**=1), VC, or V$,/7;. Here S is one of
the 3-Sasakian homogeneous spaces listed in 2.7, Hy(RP*"~1) is the non-trivial S* bundle
over RP4"—1 Vg2 is the complex Stiefel manifold of complex 2 planes in n-space, and k
is a positive integer. Moreover, each H(S) admits a one-parameter family of inequivalent
homogeneous hypercomplex structures.

Now results of Borel and Remmert [BR], and Tits [T] say that any compact homoge-
neous complex manifold X is the total space of a bundle (a Tits bundle) with paralleliz-
able fibers over a generalized flag manifold G/P, where G is a complex Lie group acting
transitively and holomorphically on X, and P is a parabolic subgroup. Since all of the
hypercomplex manifolds H(S) described in Theorem 4.3 determine a unique homogeneous
complex structure, we see that all such homogeneous complex manifolds H(S) are Tits
bundles over twistor spaces Z = G/P that are generalized flag manifolds, and with fibers
that are elliptic curves. Moreover, it can be shown that H(S) is a rational non-algebraic
manifold of algebraic dimension 2n — 1.

We can now apply Theorem 4.2 to the framed circle bundles N (p)—&(p) considered
in section 3. Note that N (p) is naturally defined for all (R*)™ and the analysis in Theorem
4.2 directly generalizes. We get
THEOREM 4.4 [BGM4]: Letn > 2 andp = (p1,...,pn) € (R*)" be an n—tuple of non-zero
real numbers. For each such p there is a compact hypercomplex manifold (N (p),Z%(p)),
where N (p) is diffeomorphic to V,(EQ the Stiefel manifold of 2-frames in C™. Moreover,
N (p) is not locally conformally hyperkéhler.

When the compatibility conditions of Theorem 4.2 are satisfied, there is a commuta-
tive diagram of foliations:

H(S)
st E
v e
4.5 S l Z,
S3/r CcP
N
o

where O is a quaternionic Kahler orbifold and Z is its twistor space. Now Z is actually
a projective algebraic variety with a Kahler-Einstein metric of positive scalar curvature,
and F is an elliptic curve. Furthermore, the leaves of the vertical foliation in diagram 4.5
are Hopf surfaces S* x S3/T.

Permuting the coordinates of p or changing their signs in Theorem 4.4 yields the
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same hypercomplex structure. Thus, we assume that p is an element in the positive cone
n={PE€R"|0<p <py<---<p,}. However, we prove

THEOREM 4.6 [BGM4]: If p and q are both commensurable sequences in the positive cone

C,, then the hypercomplex manifolds N'(p) and N (q) are hypercomplex equivalent if and

only if p = q. Here p is said to be commensurable if each of the ratios % is a rational

number. Furthermore, the manifold N (p) is hypercomplex homogeneous]if and only if
p=A(1,...,1) for some X € R*.

While the one parameter family of distinct U(n)-homogeneous hypercomplex struc-
tures on V., given in Theorem 4.6 was known [Joy1,Bat], the remaining inhomogeneous
hypercomplex structures on VnC2 are new. They are analogous to the inhomogeneous
complex structures found by Griffiths [Gr] in the versal deformation space of homoge-
neous complex structures.

Theorem 4.6 is proved by a detailed investigation of the hypercomplex geometry of
the N (p) manifolds. Assuming that p is commensurable one first shows that any hyper-
complex equivalence F' : N(p) — N(q) would have to induce orbifold diffeomorphisms
Fy, Fs, Fy such that the following diagram commutes:

Careful analysis of the above orbifold foliations shows that this is possible if and only
if p = q. One can also prove that the connected component of the group of hypercomplex
automorphisms of AV (p) depends only on the number of equalities among the components
of p. More precisely, we rewrite p = (p{"*,---,p)*), where the component p; occurs m;
times in p. m; is called the multiplicity of p; and the positive integer k = k(p) counts the
number of distinct values taken by the p;’s. We have

THEOREM 4.7 [BGM4]: For all p € (R*)™ the Lie algebra h(p) of infinitesimal hypercom-
k

plex automorphisms of N (p) is isomorphic to @ u(m;).
=1
Notice that Theorem 4.7 implies that the set of multiplicities in p is an invariant of
the hypercomplex structure even when p is not a commensurable sequence and that if p #
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A(1,...,1) then h(p) is strictly smaller than the Lie algebra of infinitesimal hypercomplex
automorphlsms of the classical homogeneous structure on V,7’,. However, the equivalence
problem in the general case is more subtle and we do not know if C,, is indeed a subspace
of the moduli space of hypercomplex structures on V,’,.

The proof of Theorem 4.7 entails the interplay between our hypercomplex Stiefel
manifolds N (p) and equivalent models using Joyce’s [Joy2] hypercomplex quotient pro-
cedure. This enables one to exhibit an invariance under scaling in p of the Lie algebra
of the infinitesimal hypercomplex automorphisms h(p) of N (p). This scale invariance in
turn allows one to prove that any infinitesimal hypercomplex automorphism must also be
an infinitesimal isometry with respect to a suitable metric. Then h(p) can be calculated
explicitly using standard results about isometric embeddings in R'.

We now explain how these hypercomplex structures on ch are related to some non-
simply connected examples. To do so we first need to establish the following notation:

DEFINITION 4.8 [BGM4]|: A commensurable sequence p € C,, is called basic if all the
coordinates are integers and the greatest common divisor of all the coordinates is one. A
basic sequence is said to be coprime if the coordinates are pairwise relatively prime. If
p is an integer multiple of a basic sequence and if the triples (p;, p;, k) have no common
factor for all 1 <4 < j < n then p is called k-coprime.

In [BGM2] we showed that for all coprime sequences p there is a 3-Sasakian manifold
S(p) such that the product S(p) x S! is a hypercomplex manifold. As mentioned above,
these examples should be thought of as generalizations of Hopf manifolds as a 3-Sasakian
manifold should be thought of as a generalization of the (4n+3)-sphere. Moreover, there is
a principal fibration S'—N (p)—S(p). Thus, both V' (p) and S(p) x S* are hypercomplex
manifolds which fiber over S(p) with circle fibers. The following theorem shows that these
two spaces are the two extremes of new families of examples as their fundamental groups
are 0 and Z, respectively.

THEOREM 4.9 [BGM4]: Let p be k-coprime. There there is a compact hypercomplex
manifold H(p, k) with universal cover py : N (p)—H(p, k) such that m(H(p,k)) = Zk
and py, is a hypercomplex map. Moreover, H(p, k) is never locally conformally hyperkahler
and is hypercomplex homogeneous if and only if p = (p,p,-..,Dp).

REMARK: If p is commensurable but not k-coprime it is still possible to construct H(p, k)
and obtain a hypercomplex orbifold. However, if p is not commensurable then H(p, k) is
non-Hausdorff. While the topology of N (p) is well-known and independent of p we have
THEOREM 4.10 [BGM4]: Let p be coprime and k a positive integer. Then, as graded
rings,

Zk[$2]
a5 = 0]

where the subscripts on x3, y2,—3 and zs,_1 denote the cohomological dimension of each
generator. The relations R(H(p, k)) are given by

H*(H(p,k),Z) = ( ®E[’!/2n—3,22n—1]>/R(%(ka));

d(p, k)x’;‘l = d(p, k)T2Yan—3 = T3Y2n—3 = 373_122”—1 = TaYon—322n—1 = 0.

Here o,_1(p) is the (n — 1)t elementary symmetric polynomial in the coordinates of p
and d(p, k) = ged(opn—1(p), k). The convention here is that d(p,0) = o,—1(p)-
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Note that the topology of H(p, k) depends on both k and p. For example,

COROLLARY 4.11 [BGM4]: For all coprime p, n > 3, and k > 1 there is one cohomological
invariant of H(p, k) that depends on p; namely, the integer d(p, k) which is the order of
the torsion subgroups of the 2n — 2 and 2n — 1 integral cohomology groups of H(p, k).

5. Applications to Other Geometries

As mentioned in the previous section, it was first noticed in [BGM2] that for any
3-Sasakian manifold S the trivial circle bundle % = S! x S is an example of a compact
hypercomplex manifold which is locally conformally hyperkahler. In this case one has the
following diagram of (orbifold) fibrations

H
e pN

pN 4
o

Very recently it has been observed that the diagram of orbifold fibrations in 5.1 holds
true for an arbitrary compact manifold (#, k) which is locally conformally hyperkéhler
but has no hyperkahler metric in the conformal class [h] of h [PePoSw, OrPi]. In general,
however, § in 5.1 can also be an orbifold. The result follows from the recent work of
Gauduchon [Gaul, Gau2] and an earlier work of Vaisman on generalized Hopf surfaces
[Vai]. We briefly describe some of Vaisman’s results here. First recall

DEFINITION 5.2: Let (M, J, h) be a hermitian manifold with a complex structure J, hermi-
tian metric h, and the 2-form w(X,Y) = g(JX,Y). Then h is locally conformally Kahler
if dw = w A a for some close 1-form «. The 1-form « is called the Lee form. If o is not
exact and Vo = 0 then H is called a generalized Hopf manifold.

Note that if ‘H is a generalized Hopf manifold then there is no Kahler metric in the
conformal class of h, as this would imply exactness of the Lie form a. There are two
natural foliations of any such H: (i) the foliation F, defined by the vector field o dual
to o, with one-dimensional compact leaves and (ii) the foliation & defined by {af, Jat},
with two-dimensional compact leaves. Assuming the leaf compactness, H is the total
space of an analytic V-submersion onto a Kéhler V-manifold in the sense of Satake [Sat].
Furthermore, all the fibers of the submersion are complex 1-dimensional tori T é Similarly,
assuming that all leaves of the foliation F, are compact H is a Seifert fibered space of an
analytic V-submersion onto a Sasakian V-manifold. In particular, if the foliation F, is
regular than H is a flat circle bundle over a Sasakian space. If the foliation &£ is regular
(Vaisman refers to this case as strongly regular), then we get the diagram of fibrations

1
H 2, s

Sl
5.3 e %

Z
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THEOREM 5.4 [VAI]: Let (H,J,g) be a compact strongly regular generalized Hopf surface
of dimension 2m. Then H is a smooth T&j—principal fiber bundle over a compact Hodge
manifold Z. Furthermore, H is a flat principal circle bundle over compact Sasakian space
S and § is a circle bundle over Z whose Chern class differs only by a torsion element form
the Chern class induced by the Hopf fibration.

This theorem has an orbifold generalization in the case the foliation £ is not regular
[Vai]. Next recall

DEFINITION 5.5: Let (#H, Ji1, Ja, J3, h) be a hyperhermitian manifold with a hypercomplex
structure {.Jy,Js, J3}, hyperhermitian metric h, and the 2-forms w;(X,Y) = g(J; X,Y).
Let Q = Zle w; A w;. Then h is locally conformally hyperkahler if d2 = Q2 A « for some
closed 1-form «.

The result of Gauduchon [Gaul-2] implies that any locally conformally hyperkahler
manifold which is not hyperkahler is automatically a generalized Hopf manifold, i.e. there
exists a metric ho in the conformal class of h whose Lee form g is V-parallel (see
also [OrPi]). This is certainly not true in the locally conformally Kéhler case. Now the
generalization of diagram 5.3 to the locally conformally hyperkahler case is automatic.
The hypercomplex structure allows us to define not two but three different foliations of
#H: (i) the one-dimensional foliation F, defined by «, (ii) two-dimensional foliations F¢
defined by {of, J;at} for each i = 1,2, 3, (all three are equivalent), and (iii) a 4-dimensional
foliation F, defined by {af, Jiof, Joat, J3af}. Altogether they yield diagram 5.1. The leaf
space S = H/F, is easily seen to have a natural Sasakian 3-structure.

This observation can be combined with the results on 3-Sasakian geometry described
in the previous sections to obtain many new theorems about locally conformally hy-
perkahler spaces. Some of them, like the classification of strongly regular homogeneous
spaces, were recently presented in [OrPi]. For further extensions of these results see [GS].
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