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New Matter Couplings in N=2 Supergravity

KRzZYSzZTOF (GALICKI

ABSTRACT: We explicitly construct a whole new class of nonlinear matter couplings
in N=2 supergravity theory in four dimensions. These are the first examples of couplings de-
scribed by non-symmetric and non-homogeneous 0-model manifolds that include the recently
found Pedersen self-dual metric with constant negative scalar curvature. We give 4n-dimensional
and multi-center generalizations of this 0-model coupling and discuss their relation to the hy-
perkéhler geometry of Taub-NUT and multi-Taub-NUT metrics.

1. Introduction

It is well known that local N = 2 supersymmetry in d = 4 dimensions allows for
scalar couplings under certain restrictions on the geometry of the underlying o-model
manifold. The scalar fields must parametrize a quaternionic Kahler Sp(n)-Sp(1) holon-
omy) manifold of the constant negative scalar curvature [1]. Witten and Bagger explicitly
constructed the most general form of such a coupling in terms of the corresponding met-
ric, its Levi-Civita connection and its Riemann curvature tensor. They also gave a list of
all examples of quaternionic Kahler manifolds known in the mathematical literature. In
particular, all of them are homogeneous spaces. Most known examples, except for those
found by Alekseevskii [2], are also locally symmetric. Until recently, no other examples
were constructed.

The first two nonlinear matter couplings in N = 2 supergravity theory were de-
rived by Breitenlohner and Sohnius [3]. These are o-models with scalar matter fields
parametrizing non-compact symmetric homogeneous spaces: the quaternionic projective
ball HH™ = Sp(n,1)/Sp(n) x Sp(1) and the Wolf space X™ = U(n,2)/U(n)xU(2). Later,
de Wit et al. gave a very general form of N = 2 supergravity coupled to an arbitrary
number of Yang-Mills and scalar multiplets [4]. They pointed out that both of the above
couplings can be also obtained in their formalism. But, as we noticed in [5], it seems that
Witten and Bagger’s lagrangian is more general, since it gives the form of all interactions in
terms of geometrical properties of an arbitrary quaternionic Kahler manifold with negative
scalar curvature. De Wit’s lagrangian can describe only those scalar couplings which cor-
respond to o-model quaternionic Kahler manifolds of a specific kind: Namely, those that
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can be obtained as quaternionic quotients by quaternionic isometries of quaternionic pro-
jective spaces HP™ = Sp(n+1)/Sp(n) x Sp(1) and their non-compact or semi-Riemannian
analogues (such as for instance HH"™ ). It is true that all the Wolf spaces are indeed quater-
nionic quotients of quaternionic projective space. For example, in our previous work (see
[6]) we have shown how to obtain Y™ = O(n + 4)/O(n) x O(4) as an SU(2) quotient of
HP™. (The generalization to the non-compact case of O(n + 4)/O(n) x O(4) o-model is
straightforward.) But it is unlikely that all manifolds with Sp(n)-Sp(1) holonomy are
quaternionic quotients of quaternionic projective or hyperbolic spaces. In particular, we
do not know if such is the case with the five examples of quaternionic Kahler manifolds
which are cosets of exceptional Lie groups. However, the formalism of [4], although not
the most general in that sense, allows for a search of new matter couplings and the method
is geometrically equivalent to our quaternionic quotient when applied to quaternionic pro-
jective or hyperbolic spaces. It is also of particular interest for mathematicians since very
few examples of non-symmetric manifolds of this kind are known.

In this paper we want to present new matter couplings. Some of them correspond to
quaternionic Kahler manifolds that ( to our knowledge) were not known in mathematical
literature before. All of the examples discussed are non-symmetric quaternionic Kahler
manifolds of constant negative scalar curvature, so that the kinetic term for the scalar
fields in the lagrangian has the correct sign (no ghosts). In dimension 4 (the real dimension
of the o-model manifold), one of our models involves the recently constructed self-dual,
U (2)-invariant Pedersen metric with negative cosmological constant [7]. We also present
its 4n-dimensional generalization with isometry group U(n — 1) x Sp(1), constructed by
Hitchin [8]. They are in some sense quaternionic analogues of 4n-dimensional hyperkahler
Taub-NUT metrics which, as we show, they give in the limit ofscalar curvature going to
zero. Next, we derive new o-model couplings with an arbitrary number of parameters
that are quaternionic multi-Taub-NUT generalizations of the Pedersen metric. Finally, we
discuss some other new interesting examples.

As in our previous paper [5], where we were considering o-models couplings on com-
pact orbifolds, we shall use de Wit’s formalism throughout. We find it very useful in
presenting our results. The method which we use, and which we have described in [6, 9]
has a very elegant geometrical interpretation in terms of quaternionic quotients. This type
of geometrical approach is particularly important as far as our understanding of global
properties of a o-model manifold is concerned. It is practically impossible to describe the
global properties of the manifold from the form of the couplings in the lagrangian only.
These give us the metric and, consequently, the curvatures only locally. Usually we do
not know if this metric is complete or non-singular. The invariance under local (or global)
N = 2 supersymmetry transformations is also not enough to determine if a coupling given
by some lagrangian corresponds to a smooth quaternionic Kéhler (or hyperkéhler) rieman-
nian manifold or not. Thus, we also need some geometrical description of the method in
which we derive our new metrics, a description which would provide a tool to investigate
their global topological properties. Just as hyperkahler quotients in the case of N = 2
global supersymmetry [10], our quaternionic quotient description provides us with such a
tool. In particular, we were able to show that new couplings presented in [5] correspond
to quaternionic riemannian orbifolds with two disjoint singular sets. In general, the singu-



larity structure can even be worse than in the orbifold case. Then, although we formally
deal with an N = 2 locally supersymmetric action, it is not clear if such couplings always
make sense. We would like to address this particular problem in a future work.

Our paper is organized as follows. In Section 2 we briefly review the notation of
de Wit et al. [4] and some results of [5]. Using this formalism, in Section 3 we derive
a whole class of new o-model couplings. In Section 4 we investigate some properties of
these new metrics. In particular we show that they are smooth and that some of them
give the various multi-Taub-NUT hyperkéhler metrics in the decoupling limit (the global
supersymmetry limit). Finally, in Section 5 we summarize our results.

2. N = 2 supergravity-matter couplings

We only very briefly review the formalism of de Wit et al. [4] for N = 2 supergravity
coupled to an arbitrary number of scalar and vector multiplets together with some of the
results presented in our previous work [5]. We refer the interested reader to the original
papers.

In the conformal tensor calculus one can couple the Weyl multiplet

{ e Vi bus Ay Vi, Tid, X', D'} (2.1)

wTp By’

to (m + 1) Yang-Mills multiplets

I ol I I

{X s Qia WIJ,’ sz]} (22)

and 27 hypermultiplets
{4z, &), (2.3

where
a=0,..,2r—1 — "matter” representation index of some Lie group G
,7=1,2 — SU(2) index
I,J=0,....m — G-group index in the adjoint representation
W a,b — spacetime indices (curved and flat).

In the Weyl multiplet e}, is the vierbein, zp,ﬁ is the gravitino SU(2) doublet, b, is

the gauge field for dilatations, A, and V/; are the gauge fields for chiral U(1) and SU(2)

respectively, T;Z is a real SU(2) antisymmetric tensor, x* is a spinor doublet, and D is a
real scalar. In the vector multiplet X! is a complex scalar, 2} is a real spinor doublet and
ng is a real SU(2) triplet. In the hypermultiplet, £ is a spinor and A$* are 2r complex
scalar fields subject to the following reality condition

AF = pap A AL, (2.4)
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where €% is SU(2) invariant antisymmetric tensor and p,g is skew symmetric matrix of

the form
o 1,

p= (2.5)
I, O

It follows from (2.4) that A°, are global coordinates on r-dimensional quaternionic vector
space H". We introduce a flat pseudo-riemannian metric on H" with signature (p/2, ¢/2)
given by a diagonal matrix d

( —Lp/2

Iq/2

\ 1/

where p 4+ ¢ = 2r. Then the scalar product

(As, AY) = d,P Az Al (2.7)

is SU(2) and Sp(p/2,q/2) invariant. Next,we require our action to be gauge invariant
with respect to the following gauge transformations

NAZ = g\ T % AL, (2.8)

where T; are antihermitian generators of some Lie group G. Gauge invariance of the
constructed lagrangian (see (4.13) in [4]) restricts G to be some subgroup of Sp(p/2, ¢/2).
The authors of [4] start with an N = 2 superconformally and gauge invariant action with
all three multiplets introduced above. Next, they show that the gauge fields for dilatation,
chiral SU(2) x U(1) and S-supersymmetry decouple algebraically and thus the resulting
action is that of N = 2 Poincare supergravity coupled to matter.

The gauge fixing condition for dilatation and the algebraic equation for the D-field
lead to the constraint .
(A, A') = —2/K%, (2.9)

where £ is Newton’s constant. Taking into account the SU(2) chiral gauge invariance,
after solving the auxiliary field equation for V., we see that the scalar fields A must
parametrize a quaternionic homogeneous space

_ def
HP" Y (q/2,p/2) = Sp(a/2,p/2)/Sp(a/2,p/2 1) x Sp(1). (2.10)
From now on we shall be interested only in the case when p = 2. Then (2.10) is just

a quaternionic hyperbolic space HH"~! = Sp(r — 1,1)/Sp(r — 1) x Sp(1). It is a non-
compact quaternionic Kahler manifold of constant negative scalar curvature and a definite
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metric. As pointed out in [4] and extensively discussed in or previous work [5], if we do
not have non-propagating auxiliary gauge fields then the scalar fields are restricted to
parametrize HH"~!. However, if we introduce auxiliary gauge degrees of freedom Wlf (
without corresponding kinetic term in the action) then our o-model manifold is just a
quaternionic quotient of HH"~! by some subgroup K of the isometry group Sp(r — 1, 1).
All these isometries preserve the quaternionic structure of HH"~!. As shown in [9] this is
sufficient for the consistent quaternionic reduction.

The Y;g fields equations, where I is now the index of the quotient group K of non-
propagating gauge fields, yield the following constraints on A = (A$)

def

p(A) = d, AﬁekZTI VA =0, I=1,..dimK (2.11)

J
which we recognize as a quaternionic moment map for the quotient. The quotient manifold

M=HH"'jKk ¥

{ACHH': pu(A) =0}/K (2.12)
is again a smooth quaternionic Kahler manifold provided that the global action of K C
Sp(r — 1,1) is free and in the case of non-compact isometries also proper. (Otherwise M
does not have the differentiable structure of a riemannian manifold.)

Let us write the bosonic part of the whole lagrangian. For simplicity, we omit the
fermionic part as well as all other couplings except for the o-model scalar fields to the
determinant of the vierbein (the gravitational field). This is enough to describe our new
couplings uniquely and all other couplings can be obtained without difficulty. Thus the
relevant part of the action is

e 'L, = —d,PO,AZO" AL + —V’ VH (2.13)
where
Vi — x2d BALY AC (2.14)
wi a BT pYy
and
0, AL 9,A¢ — gWiT, % A7, (2.15)

The Wlf gauge fields are auxiliary and it can be implicitly written in terms of scalars AS:

Rl
gWiad PIT GALT, AT = d,°[A 0, T; G A7), (2.16)

Then (2.13) simplifies after substituting (2.14-16)
—1 poain g Lo 3 4j ob DRy i
€Ly = — (D Aiy A+ LKA (Ai, 8,A7)(Az, O A +gPWIWH (T, Ag, ToAT). (2.17)

Here the generators T for a Lie algebra of the subgroup K only. Eq. (2.17) is a gen-
eral o-model coupling with scalar fields parametrizing a non-compact quaternionic Kahler
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manifold M % mHr—1 //K ( assuming that the action of K on HH"~! has required prop-
erties of being free and proper). Its quaternionic dimension is (r —1 —dimK). In the next

section we shall be interested only in one parameter subgroups of the isometry group of
HH"~!. Thus dimK =1, K C Sp(r — 1,1), and dimM = 4(r — 2).

3. New couplings from the quaternionic reduction

We would like to investigate the following infinitesimal action of a one-parameter
non-compact group of isometries of HH"~! [8]

05 (A)g = gsT AL, (3.1)
where 0 A |
( 0 |
A 0 | |
O
| |
(0) | il,_o |
| |
T = . (2.23)
0 A
| | 0
A 0]
()
| |
\ | O |  —il,_o
| |

Notice that T in (2.23) is antihermitian with respect to our metric. It is easy to
see that 7% generates a non-compact group isomorphic to R ~ SO(1,1) C Sp(r — 1,1).
Before we proceed with our investigation of the o-model coupling which is given by this
particular action we want to introduce a new notation. It will explicitly exhibit the
quaternionic structure of the theory and at the same time it will dramatically simplify
many calculations. First notice that because of the reality condition (2.4) one can write
A as a 2 x 2r matrix of the following form

d_ D,
A= , (3.2)
—ot

where ®_, & are r-dimensional complex vectors. Now, let us introduce an r-dimensional

quaternionic vector

u o, +jor (3.3)
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or
u® = AS + AT, a=0,..,r—1, (3.4)

where j is another quaternionic unit. The metric (2.6) can now be written in the form
Iy O

d= (3.5)
0 I

and scalar product associated with it we shall denote by (u, u). Now it is easy to rewrite
everything in terms of our quaternionic fields. The constraint (2.9) becomes

(Ai, A7) =2(u, u) = —2/x? (3.6)

and (2.11)
p(u) = (u, Tu) = 0. (3.7)
Notice that (u, Tu) = —(u, Tu) since T is antihermitian with respect to the above metric.

Thus (3.7) are three real constraints on u (or equivalently A). Here the matrix T is an
antihermitian operator in H" and is given by

(0 A \

K O | ?:]Ir_z

| /
Furthermore, we write the lagrangian (2.17) in the following form
e 'L, = —2(0,u, ") + 2x*(u, d,u)(0*u,u) + 2¢°W,WH(Tu, Tu), (3.9)
where the auxiliary field W), is given by
W, =g *(u,0,Tu)(Tu, Tu) . (3.10)

The chiral SU(2) gauge transformation is very simple and it is realized by quaternionic
multiplication by unit quaternions from the right

u~uy, vv=1 (3.11)
Substituting (3.10) into (3.9) we get
e 'L, = —2(0,u, 0"u)+ 2k*(u,d,u)(6*u, u) + 2(u, d,Tu)*(Tu, Tu) ! (3.12)

where the quaternionic scalar fields are subject to (3.7) and (3.6). Also, we consider only
equivalence classes, the equivalence relation given by the R transformation

u~efu (3.13)
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Notice that
( cosh As sinhAs | \

sinh As coshAs |
e’ = (3.14)

K 0) | 6is]IT_2

| ),

is a group element parametrized by s € R. (The sinh and cosh denote the hyperbolic
functions). We now show that the above action is free everywhere on the ball (not only
on the submanifold given by (3.7)). But we know that (3.7) is an invariant submanifold
for this action. Thus, the group acts invariantly and freely also on (3.7). Let us assume
that the action in question is not free. Let us take some u on the quaternionic ball that
is fixed by some non-trivial element of this action. Let u®, u! be the first and the second
component of the vector u. Due to (3.6) u°® # 0. There must exist a nontrivial s # 0 such

cosh As sinh As u?

= VU (3.15)
sinh As cosh As ul ul

where v is some unit quaternion. Solving this two-dimensional system of equations we
conclude that ¥ must be equal to one and that 2 cosh As = 2, thus the only element of R
that fixes our point in the ball parametrized by u is s = 0 — the trivial one. Consequently
the action must be free on the ball. Notice that the submatrix e**I,_s could be replaced
by an arbitrary matrix and this new R action would still be free.

Moreover, one can check that this action is proper in the following sense: An action
of a non-compact isometry group on the riemannian manifold M

g: x— glx)eM, zeM, ged
is a ‘proper’ action when the map G x M — M x M given by

(9,2) — (9(z),2)

has the property that the inverse images of compact sets are compact. Then, provided that
the above action is free, the quotient space M /G is again a smooth riemannian manifold
[11]. (It is trivial to see that M must be non-compact, otherwise the action of G is never

proper).

Thus we know that our manifold is a smooth riemannian 4(r — 2)-dimensional with
complete quaternionic Kahler metric. It is non-compact and of constant negative scalar
curvature. The isometry group is easily seen to be U(r — 2) x Sp(1). For r = 2 the metric
(as guaranteed by he quotient construction) is a self dual gravitational instanton with
negative cosmological constant (the Weyl tensor is self-dual) and is the recently found
Pedersen metric [7]. In higher dimensions we obtain the generalization found by Hitchin
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[8]. We now show that the metrics just constructed are related to hyperkdhler Taub-NUT
metrics in the sense that they produce them in the scalar curvature going to zero limit
(or global supersymmetry limit). Since Taub-NUT metrics are not locally symmetric, our
metrics are not either by the argument of [6]. They are also non-homogeneous, because all
non-compact homogeneous examples were classified by Alekseevskii [2] and ours are not
non-symmetric Alekeevskii’s spaces.

Let us introduce a global non-homogeneous coordinate system on HH"~!. Since
u® # 0 we define
w® =k W)™, a=1,..,r—1. (3.16)

The constraint (3.6) can be rewritten as
Tou°[—1 + k?(w,w)] = —1/K?%, (3.17)

def -1 _ . . .
where now (w, w) = Y. w*w® We observe that our projective coordinates are bound

to a ball 0 < (w,w) < 1/k?. Also the constraint (3.17) is solved provided
770,,0 1 2 -1
ulu’ = ?[1 — Kk (w,w)] (3.18)

w, as defined above, is also invariant under multiplication of u from the right. Thus we
can fix this Sp(1) action by choosing u° to be real and given by

u® = \/%[1 — k2 (w,w)]~L (3.19)
Now, let us see how the R action can be expressed in the new coordinate system. We have
@s(w') = (cosh(As)w! + k! sinh As)(k sinh(As)w® + cosh As) ™!
0s(w) = e®*w(ksinh(As)w' +coshAs)™, a=2,..,r (3.20)
Next, we want to rewrite our moment map constraint (3.7). We get the following

> wiw® = é(wl —w') (3.21)
K
a=2

The above constraint is clearly invariant with respect to the transformations of w by (3.20).

Finally, we can write our scalar part of the N = 2 supergravity lagrangian in terms
of the w fields:

2(0,w, 0tw) N 26%(0,w, w)(w, 0"w)

¢ Lo = T 2w w) (1 — k2 (w, w))?

4 w®iw® T, —a o
Ak’ + K2 Y, Widwe + L (2T 252%(251:);0 P )y2

KA (A2k2 — Nw'lw! + Y ww®)(1 — k2(w, w))

- (3.22)
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where all sums are over o = 2, ...,7 — 1. The above lagrangian is gauge invariant under the
R transformation (3.20). In fact, it is easy to fix the gauge and solve the constraint (3.21)
which is linear in w! field. One can check that there is always a gauge transformation
which makes w! purely imaginary, i.e., ,

W +w! =0, (3.23)
which means that in this gauge
K r—1
o\ Z T w® = w'. (3.24)
a=2

We now can insert (3.24) into the lagrangian (3.22) to express it in terms of (r — 2)
quaternionic scalar fields w®. The w®’s are still bound to be in the following region inside
the ball >.7_) w%w® < 1/x

r—1 2 r—1 r—1
;wawa + 4%(;::2 waiw“)(;maiwa) < 1/K% (3.25)

The boundary of this region is given by some quartic equation and is topologically equiv-
alent to S 9. In the case when r = 3, the situation is even simpler because then (3.25)
reads

r—1 2 r—1
QO K —a, )2 2
;w w +R(QZ:21U w*)* < 1/k (3.26)
which is equivalent to
: 2)2
D ww < ?(\/1 +A"2-1). (3.27)
a=2

Thus w®’s parametrize a 4-ball with radius %2(\/1 + A=2 —1). In higher dimensions the
situation is slightly more complicated and given by the eq.(3.25). Now we have the full
geometry: A global and local description of our o-model manifold with quaternionic Kahler
metric on it and with the resulting interactions in the lagrangian. The full supersymmetric

action can easily be recovered with the help of [4]. We want to show the analogy of this
model with that of hyperkahler Taub-NUT.

4. The global supersymmetry limit: other examples

Let us rewrite our group transformations (3.20) in its infinitesimal form

A
Sswh = =5 — Aus(wh)?
K
Sow® =is — kAswlw®, a=2,..,r—1 (4.1)
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Let us also assume that A = Ax. We shall examine the decoupling limit of Newton’s
constant going to zero. This is also the global supersymmetry limit and, consequently, the
resulting metric should be hyperkahler at least locally. The transformation rules in the

limit become
S,w' = As

osw® =14s, a=2,..r—1 (4.2)

and the constraint equations read

Z w%iw® = A(w' —wt) (4.3)

Finally, the lagrangian (3.22) has a simple form

r—1
lim £,(W, W) = Lryub_nvr = —2 Z O w0+ w™ + 2 Adyw T_Z =2 0”10, )

k—0

. (4.4)

a=1

The lagrangian (4.4) is invariant under local gauge transformations given by (4.2). Now
we can fix the gauge so that

wh+w' =0 (4.5)
and then solving (4.3) which is linear in w! we obtain
1
2£Taub NUT(W W 4A2 Zw zwa 8“(211) w®

(., T ,w®)?
403>, w*w> + A?)

But this is exactly the formulation of the Taub-NUT hyperkahler o-models given by hy-
perkahler quotient of the quaternionic vector spaces. The scalar curvature going to zero
limit takes us from the Pedersen metric and its 4n-dimensional generalization to the Taub-
NUT metrics. This limit makes sense even globally since in both cases the topologies are
the same, namely R*".

= 0w M w + (4.6)

Since it is known how to construct multi-center Taub-NUT metrics via hyperkahler
quotients [12] it is rather straightforward to generalize our quaternionic Taub-NUT metric
to a multi-center case. We shall demonstrate this for the two-center metric. We intro-
duce the following abelian two-parameter action on HH? given in terms of infinitesimal

generators '
( 0 X 0 0\ ( ¢t 0 0 O \
0

A0 0 O 0 0 O
Ty = , Tp= (4.7)
0 0 2 O 0 0 2p O
\0 0 0 z) \O 0 0 =p
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The first is the generator of SO(1,1) C Sp(1,3) and the second one generates a circle
action with U(1) C Sp(1) x Sp(3) € Sp(1,3). Thus our two parameter group action is
given by the following matrix multiplication of the homogeneous vector u® from the left.

( coshAs sinhAs O 0 \ ( e2™ir 0 0 /u" \
sinhAs coshds 0 0 0 1 0 0 ul
Ps,r (u)a = ' . (48)
0 0 e 0 0 0 e2mwr 0 u?
\ 0 0 0 e \ 0 0 0 e / \u?’ /

where s,A € R p is an integer and r € [0,1) if p is even or r € [0,1/2) if p is odd. As
before, the action generated by T, is free. The one-parameter subgroup generated by the
U(1) generator also acts freely but only on constraints given by the moment maps

ZY weHA®  :pa(u) = (0, Tau) = 0, pp(u) = (u, Tpu) = 0} (4.9)

Also, any one parameter subgroup of this R x U(1) acts freely on the constraints. Thus
HH?3 //bbr x U(1) is a smooth self-dual 4-manifold with negative cosmological constant. In
the scalar curvature going to zero limit (A — 0 and 1/p — 0) we obtain a two-center Taub-
NUT metric given by the familiar hyperKihler quotient of H2. The limiting procedure
involves taking p = Ak where k is our coupling constant. Thus taking a smooth limit
of Kk — 0 takes us away from integer values of p. For irrational values of p our U(1)
action becomes non-compact. We do not know if our metric would make sense globally for
arbitrary real p > 1 but we think this is the case. Generalization of the above example to
multi-center metrics involves taking more U (1) generators and is rather straightforward.

Let us come back for a moment to the metric discussed in Section 3 and point out
that the R action introduced there could be modified in the U(1) sector by introducing
arbitrary weights. This does not introduce fixed points but breaks the isometry group of
a quotient metric to a subgroup of Sp(1) x U(r — 2). We believe that this, in general,
would correspond to certain deformation of 4 < 4n-dimensional analogues of the Pedersen
metric.

Finally we would like to present our last example which is to some extent a quater-
nionic analog of the Eguchi-Hanson metric [13]. Let us examine the following U(1) action
on the quaternionic hyperbolic space HR"

wi(u, up) = (e2™Phu, 2™ 0hyy) (4.10)
where t € [0,1) if (p+ ¢) is odd and where ¢t € [0,1/2) if (p+ q) is even, p, ¢ are relatively
prime positive integers. It is easy to see that this action is a quaternionic isometry and that
it is locally free. In the case of quaternionic projective space this action was also locally

free but never free and would lead to the compact quaternionic orbifolds constructed in
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[9]. But now the situation is a bit different: Let us examine it carefully. Again, since
u® # 0 we introduce the Fubini-Study projective coordinates

Wo = ugu, ', for a=1,..,r (4.11)

In these coordinates the action (4.10) becomes

w) = e?ﬂ’iptwe—%riqt 4.12
Qat( ) 3

and the invariant submanifold of the zero moment map is given as

Ze{weHH : —ig+p) Waiwa =0} (4.13)
We then write
wW=w, +jwW_ (4.14)
where w,w_ € C" U {||w,|? + ||w_||* < 1} and observe that
Qot(w—i—a W—) = (627ri(p—q)tw+’ e2ﬂi(p+q)tw—)

Z={(ws,w_) €HH : [w_|"—[[wi|?=—q/p, W_-wi=0}. (415

It is not difficult now to see that the action has non-trivial isotropy in Z exactly at the
points where w_ = 0. This gives us a singular set ¥y described explicitly as

Yo ={(wp,w_)€Z: w_=0}/S"
={(wy,0)€ Z: |lw_|*=g/p}/ST = PE .

One easily checks that the isotropy group 'y = {t € S' : ¢;(x) = z}, for points x
corresponding to Y, is

Lp—q, if (p+q) is odd;
o = { Z%, if (p + q) is even. (4.16)
Thus for L ) is odd
, if (p+q) is odd;
g = 4.17
p—d {2, if (p + ¢q) is even. (4.17)

our U(1) action is free. For any other choice of p,q we obtain yet another example of
a quaternionic orbifold with one singular set given by 3. But in the case of (4.17) our
quotient construction gives a smooth quaternionic Kéhler metric. It is easy to see what is

the boundary at infinity of the 4-manifold given in this construction. It is the lens space

L, 1 et S3/Z,—1 for (2p —2) even (p and p — 2 relatively prime) and Ly, for even p. It

follows that we can obtain a self-dual 4-manifold with any L,, as its boundary in infinity.
This is remarkably similar to the hyperkahler multi-Eguchi-Hanson self-dual instanton.
The boundary at infinity has the same topology. But the manifolds are different. It is not
quite clear how these metrics correspond to the multi-Eguchi-Hanson metrics in the scalar
curvature going to zero limit. The naive limit produces a singular object: a cone on the
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lens space. This is the isolated point singularity discussed by Hitchin; it can be resolved,
giving rise to the multi-Eguchi-Hanson instantons [14]. We would like to address the issue
of global properties of these metrics in our future work.

5. Conclusions

Using the formalism of N = 2 supergravity theory coupled to a matter system to-
gether with the methods of quaternionic quotient we constructed a whole new class of
very interesting o-model couplings admitting N = 2 local supersymmetry. Our results
are interesting from the point of view of N = 2 supergravity because of the variety of
new matter couplings we proposed. It would be interesting to see some quantum proper-
ties of the various models. On the other hand our results are also very significant from
the point of view of the differential geometry of quaternionic manifolds with Sp(n)-Sp(1)
holonomy to which all our couplings correspond. All the manifolds we discussed are
non-symmetric and non-homogeneous quaternionic Kahler manifolds. We investigated
connections between our metrics and some non-compact hyperhahler metrics which they
give in the scalar curvature going to zero limit. It would be an interesting question to
ask whether all known non-compact examples of hyperhdhler metrics are related in this
way to quaternionic metrics. As we showed this is indeed the case with the Taub-NUT
and multi-Taub-NUT hyperhahler metrics for which we constructed their quaternionic
analogues. Our last example seems to be a quaternionic analogue of multi-Eguchi-Hanson
metrics. Recently, the hyperhahler quotient led to the construction of new self-dual grav-
itational instantons conjectured by Hitchin with S3/T" as their boundary at infinity [15].
(T is a discrete subgroup of SU(2)). In particular, it would be very interesting to see if
also those hyperhahler metrics have their quaternionic analogues. We expect to address
some of these questions in our future work.
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