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Some New Examples of Compact
Inhomogeneous Hypercomplex Manifolds

CHARLES P. BoYER KRZYSZTOF GALICKI BENJAMIN M. MANN

ABSTRACT. We announce the construction of new families of compact, irreducible, inhomo-
geneous, hypercomplex manifolds which are not locally conformally hyperkihler. We obtain,
for all n>2 and all n-tuples of non-zero real numbers p=(p1,...,p»), & hypercomplex structure
{Z*(p)}a=1,2,3 on the Stiefel manifold of 2-planes in C*. We determine the Lie algebra of infinites-
imal hypercomplex automorphisms for each structure and show that among these structures
there are uncountable families of pairwise inequivalent ones. Furthermore, these hypercomplex
structures are inhomogeneous with the exception of the classical homogeneous spaces obtained
when all the p;’s are equal. Finally, countably many of our examples admit discrete hypercom-
plex quotients by an action of the cyclic group of order k¥ and we analyze the topology of these
non-simply connected examples. Full details and proofs appear in our paper [BGM3].

1. Introduction

Recently there has been much interest in quaternionic geometries [Sal2]. One such
example is that of hypercomplex geometry. A smooth manifold M is said to be a hyper-
complex manifold if there exists three complex structures, I, J, and K on M, satisfying the
algebra of imaginary quaternions. Perhaps the simplest examples of hypercomplex mani-
folds are the hyperkahler manifolds where each of the three complex structures is actually
Kahler. Until recently, examples of hypercomplex manifolds that are not hyperkahler were
rare, the simplest ones being the Hopf manifolds $*"+3 x S! which are locally conformally
hyperkahler. In [BGM2] we gave a new class of compact, locally conformally hyperkahler
manifolds by replacing S4**2 with any 3-Sasakian manifold. Hernandez [Her] found similar
examples involving the quaternionic Heisenberg group. These non-hyperkahler examples,
however, are not simply connected.

In dimension 4 all hypercomplex structures are locally conformally hyperkéhler [Boy];
however, in higher dimensions this is no longer true. One class of hypercomplex manifolds
that are not locally conformally hyperkahler was first studied by physicists interested in
supersymmetric o-models and Spindel et. al. [SSTP] classified compact Lie groups which
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admit hypercomplex structures. This is the generalization to the hypercomplex category
of the classic work of Samelson and Wang on the classification of compact Lie groups
[Sam] and homogeneous spaces [W]| admitting complex structures, respectively. Using
different methods, Joyce [Joyl] later recovered this [SSTP] classification and developed a
theory of homogeneous hypercomplex manifolds which generalizes Wang’s [W] result in
the complex case. However, inhomogeneous examples have been harder to find. With this
background we announce the explicit construction of new classes of compact, irreducible,
hypercomplex manifolds which are not locally conformally hyperkahler and almost all
of which are inhomogeneous. The first and most basic class occurs on complex Stiefel
manifolds and thus these examples are simply connected.

THEOREM A: Let n > 2 and p = (p1,...,Pn) € (R*)™ be an n—tuple of non-zero real
numbers. For each such p there is a compact hypercomplex manifold (N (p),Z%(p)),
where N (p) is diffeomorphic to V§ ,, the Stiefel manifold of 2-frames in C". Moreover,
N (p) is not locally conformally hyperkéhler.

Permuting the coordinates of p or changing their signs in Theorem A yields the
same hypercomplex structure. Thus, we assume that p is an element in the positive cone
Chon={P€R" |0<p; <p3 <---<p,}. However, we prove

THEOREM B: If p and q are both commensurable sequences in the positive cone C,
then the hypercomplex manifolds N (p) and N'(q) are hypercomplex equivalent if and
only if p = q. Here p is said to be commensurable if each of the ratios % is a rational

J
number. Furthermore, the manifold N (p) is hypercomplex homogeneous if and only if
p=A(1,...,1) for some \ € R*.

While the one parameter family of distinct U(n)-homogeneous hypercomplex struc-
tures on Vs,z given in Theorem B was known [Joyl], the remaining inhomogeneous hyper-
complex structures on V‘S’Q are new. They are analogous to the inhomogeneous complex
structures found by Griffiths [Gr] in the versal deformation space of homogeneous complex
structures.

Our next result shows that the connected component of the group of hypercomplex
automorphisms of N (p) depends only on the number of equalities among the components
of p. More precisely, we rewrite p = (pi"*,---,p) *), where the component p; occurs m;
times in p. m; is called the multiplicity of p; and the positive integer k = k(p) counts the
number of distinct values taken by the p;’s. We prove

THEOREM C: For all p € (R*)™ the Lie algebra h(p) of infinitesimal hypercomplex auto-
k

morphisms of N (p) is isomorphic to @u(mi). Hence, the connected component of the
=1
' k
group of hypercomplex automorphisms of N'(p) is H U(m;). In particular, there exists a
i=1
natural hyperhermitian metric h(p) on N (p) such that every infinitesimal automorphism



is an infinitesimal isometry with respect to h(p).

Notice that Theorem C implies that the set of multiplicities in p is an invariant of the
hypercomplex structure even when p is not a commensurable sequence and that if p #
A(1,...,1) then h(p) is strictly smaller than the Lie algebra of infinitesimal hypercomplex
automorphisms of the classical homogeneous structure on V‘S,z.

We now explain how these hypercomplex structures on VSJ are related to some non-
simply connected examples. To do so we first need to establish the following notation:

DEFINITION D: A commensurable sequence p € C,, is called basic if all the coordinates are
integers and the greatest common divisor of all the coordinates is one. A basic sequence
is said to be coprime if the coordinates are pairwise relatively prime. If p is an integer
multiple of a basic sequence and if the triples (p;,pj, k) have no common factor for all
1< i< j<n then p is called k-coprime.

In [BGM2] we showed that for all coprime sequences p there is a 3-Sasakian manifold
S(p) such that the product S(p) x S! is a hypercomplex manifold. As mentioned above,
these examples should be thought of as generalizations of Hopf manifolds as a 3-Sasakian
manifold should be thought of as a generalization of the (4n+3)-sphere. Moreover, there is
a principal fibration S'—N (p)—S(p). Thus, both V' (p) and S(p) x S* are hypercomplex
manifolds which fibre over S(p) with circle fibres. The following theorem shows that these
two spaces are the two extremes of new families of examples as their fundamental groups
are 0 and Z, respectively.

THEOREM E: Let p be either coprime or k-coprime. There there is a compact hypercom-
plex manifold H(p, k) with universal cover py, : N (p)—H(p, k) such that w1 (H(p, k)) = Z
and py, is a hypercomplex map. Moreover, H(p, k) is never locally conformally hyperkahler
and is hypercomplex homogeneous if and only if p = (p,p,...,Dp).

Theorems B,C, and E immediately imply

COROLLARY F': Let p be either coprime or k-coprime and q be either coprime or l-coprime.
Then H(p, k) is hypercomplex equivalent to H(q,!) if and only if p = q and k = L.
Furthermore, the Lie algebra of infinitesimal hypercomplex automorphisms of H(p, k) is
the Lie algebra h(p) given in Theorem C.

REMARK: If p is commensurable but neither coprime nor k-coprime it is still possible to
construct H(p, k) and obtain a hypercomplex orbifold. However, if p is not commensurable
then H(p, k) is non-Hausdorff. While the topology of N (p) is well-known and independent
of p we have

THEOREM G: Let p be coprime and k a positive integer. Then, as graded rings,

Li[z2]

H*(H(p,k),Z) = ([:UQTO]

&® E[y2n—3; z2n—1]> /R(H(pa k))v
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where the subscripts on x3, y2,_3 and zs,_1 denote the cohomological dimension of each
generator. The relations R(H(p, k)) are given by

d(p, k)xé“l = d(p, k)T2Yan—3 = T3Y2n—3 = 373_12271—1 = TaYon—3%2p—1 = 0.

Here o,,_1(p) is the (n — 1)** elementary symmetric polynomial in the coordinates of p
and d(p, k) = ged(opn_1(p), k). The convention here is that d(p,0) = o,_1(p)-

Note that the topology of H(p, k) depends on both k and p. For example,

COROLLARY H: For all coprime p, n > 3, and k > 1 there is one cohomological invariant
of H(p, k) that depends on p; namely, the integer d(p, k) which is the order of the torsion
subgroups of the 2n — 2 and 2n — 1 integral cohomology groups of H(p, k).

2. Outline of proofs

Our constructions were motivated by results in 3-Sasakian geometry in that we showed
that any circle bundle over a 3-Sasakian manifold admits a natural almost hypercomplex
structure and that this structure is integrable under some additional compatibility condi-
tions. Our N (p) examples for coprime sequences p arose exactly this way. However, it
became apparent that one could work on the N (p) level directly and drop the coprime
and commensurable assumptions on p. We now outline these ideas and refer to our paper
[BGM3] for complete details and proofs.

Recall that an almost contact structure on a differentiable manifolds M is a triple
(®,&,m), where @ is a tensor field of type (1,1), £ is a vector field, and 7 is a 1-form which
satisfy
2.1 n¢)=1 and Pod=-I+(®@0,

where I is the identity endomorphism on T'M. The following definition is due to Kuo [Kul].

DEFINITION I: An almost contact 3-structure on S consists of 3 almost contact structures
(®2,£9,n%)3_, which satisfy

na (é-b) — 5ab,
2.9 ¢a§b — _eabcgc,
P° o q)b _ ga ® nb — _eabccbc _ 5abH'

Furthermore, if g is an associated Riemannian metric on S; that is, the metric that satisfies
the conditions g(X,£%) = n*(X) and g(®°X,®?Y) = g(X,Y) —n%(X)n*(Y), then we say
that S is a 3-Sasakian manifold if the vector fields £* are unit length Killing vector fields
with respect to g and

2.3 X =V and (Vx®)(Y)=n*(Y)X — g(X,Y)e"
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Next, let # : P — S be a circle bundle over S and let § be a Riemannian metric on
P such that 7 : (P,g) — (S, g) is a Riemannian submersion. Let ); denote the vertical
subbundle of the tangent bundle TP to P. Any nowhere vanishing smooth section = of
V; generates the S* action on P. The almost contact 3-structure on S allows us to define
an almost hypercomplex structure on P as follows. The metric § on P splits the tangent
bundle TP as TP ~ H & V; and 7, induces an isometry between the horizontal vector
space ’H at a point p € P and the tangent space T, S. For any vector field X on S,

we denote by X its horizontal lift to P, that is, X i is the unique basic vector field that is
m-related to X. In particular, the three vector fields f“ generate a subbundle Vs of H that
is isometric at every point to the bundle V5 on S. Let H denote the orthogonal complement
to Vg in ’H so that we have the further splitting TP ~ H D VicHS V30 V. Since the
®* ’s are sections of End H ® End Vs on S they lift to sections ®¢ of End H @ End V3
on P defined on basic vector fields by $*X = $2X and extended to arbitrary sections of
End H & End V5 by linearity. Hence, we can define endomorphisms Z¢ on TP by

2.4 I°X = —3°X + " 9*(X)E and I°E = —£°

where X is any horizontal vector field on P. One easily sees that this defines an almost
hypercomplex structure on P which is, in general, not integrable. We shall denote by
H(S) this circle bundle with its almost hypercomplex structure.

THEOREM J: Let H(S) be a circle bundle over a 3-Sasakian manifold S, and let = be a
nowhere vanishing vertical vector field on H(S) which generates the circle action. We call
the pair (H(S),Z) a framed circle bundle on S. The almost hypercomplex structure given

above is integrable if and only if the horizontal subbundle H defines a u(1) connection
with curvature 2-form w and the following three conditions hold:

(i) w(é*, &%) =0 for any a,b=1,2,3.

(i) w(é*, X) =0 for all a = 1,2,3 and any section X of H.
(iii) w((i)“X, @“f’) = w(X, }7) for all a = 1,2, 3 and for any sections X,Y of H.

Theorem J can now be shown to apply to the framed circle bundle N (p)—S(p)
constructed in [BGM1, BGM2]. Moreover, N'(p) is naturally defined for all p € C,, and

the analysis in Theorem J directly generalizes to prove Theorem A.

When the compatibility conditions of Theorem J are satisfied, a beautiful picture
emerges, namely there is a commutative diagram of foliations:

H(S)
st E
N
2.5 S l z,
S3/T Cp!
e v
O



where O is a quaternionic Kahler orbifold and Z is its twistor space. Now Z is actually
a projective algebraic variety with a Kahler-Einstein metric of positive scalar curvature,
and E is an elliptic curve. Furthermore, the leaves of the vertical foliation in diagram 2.5
are Hopf surfaces S x S3/T.

Theorems B and C are proved by a detailed investigation of the hypercomplex geom-
etry of the N (p) manifolds. Assuming that p is commensurable we first show that any
hypercomplex equivalence F' : N(p) — N (q) would have to induce orbifold diffeomor-
phisms Fi, Fs, F4 such that the following diagram commutes:

%
%

o) — O(q).

Theorem B then follows from a careful analysis of the holonomy groups of the leaves of
the vertical foliation of diagram 2.5.

The proof of Theorem C entails the interplay between our hypercomplex Stiefel man-
ifolds NV (p) and equivalent models using Joyce’s [Joy2] hypercomplex quotient procedure.
This enables us to exhibit an invariance under scaling in p of the Lie algebra of the infinites-
imal hypercomplex automorphisms h(p) of N (p). This scale invariance in turn allows us
to prove that any infinitesimal hypercomplex automorphism must also be an infinitesimal
isometry with respect to a suitable metric. Then h(p) can be calculated explicitly using
standard results about isometric embeddings in R.

Finally, Theorem E follows from Theorem A and a covering space argument while
Theorem G follows from a standard Gysin sequence calculation and Theorem E of [BGM2].
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