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A Note on Smooth Toral Reductions of Spheres

CHARLES P. BOYER KRzYSzZTOF GALICKI BENJAMIN M. MANN

In previous work [BGMR1, BGMR2] the authors and E. Rees, using 3-Sasakian toral
reductions of the standard (4n — 1)-dimensional sphere, constructed compact 3-Sasakian
7-manifolds with arbitrary second Betti number. These were the first examples of smooth
compact Einstein manifolds of positive scalar curvature with arbitrary second Betti num-
ber. This toral reduction procedure actually constructs more general families of 3-Sasakian
(4n — 1)-dimensional orbifolds S(2). However, to obtain (4n — 1)-manifolds with by > 1
one should answer two separate questions: (1) What are the orbifold Betti numbers of
S(22)? and (2) When is S(2) smooth?

In [BGMRI1] sufficient conditions for guarenteeing smoothness for general toral re-
ductions were given, and one easily sees that these conditions are also necessary. This
is formulated in Proposition 1.3 below. However, the Betti number computations were
carried out only for dimension seven. In this case the we gave a 2k-parameter family
of smooth 3-Sasakian 7-manifolds with second Betti number k. Contemporaneously, R.
Bielawski [Bi] computed Betti numbers of all these toral examples; more precisely, he

showed that
(k+i—1>
bai = ;

for 2+ < n — k — 1 for any 3-Sasakian orbifold obtained by 3-Sasakian reduction of
by a k-dimensional torus. Since the odd Betti numbers bg;41 of any 3-Sasakian manifold
are known to vanish [GS] for ¢ < n—k —1 (for orbifolds this follows from results of [BG]),
Bielawski’s results and Poincaré duality would determine the rational homology of any 3-
Sasakian manifold obtained from toral reduction. However, there remains the question as
to when these higher dimensional orbifolds can be smooth manifolds. In this note we give
mod 2 obstructions to smoothness which show, somewhat surprisingly, that if the reduced
3-Sasakian orbifold § is a smooth manifold of dimension greater than 7 then b < 4, and
if the dimension of the reduced 3-Sasakian manifold is greater than 15 then by < 1. That
is, we prove

S4n—1

THEOREM A: Let S be a 3-Sasakian manifold obtained by 3-Sasakian reduction of S*"—!
by a torus T*. If k > 1 then dim S = 7,11, 15. In addition, if k > 4 then dim S = 7.
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After proving Theorem A we show that these bounds are sharp in that there exist
infinite families of manifold examples in all cases not eliminated by Theorem A. This also
shows that any additional mod p obstructions to smoothness for p an odd prime give no
further constraints on the Betti numbers.

§1. Proof of Theorem A.

Recall from [BGMRI1] that any k-torus action on S4"~! that preserves the 3-Sasakian
structure on the sphere is given by a quaternionic representation of the k-torus 7% on a
quaternionic vector space H™. This action can be described by left multiplication on a

quaternionic column vector u = (ug,---,u,)? by a diagonal matrix hq(7,..,7%) € T™ C
Sp(n)
(17 2
H T 0
i=1
1.1 ho(ri,..,Tk) = : : ,
0 ... H 7'1-0'"
\ o)

where (71,..,7;) € S* x --- x §' = T* are the complex coordinates on T*, and a’ € Z.
This representation gives rise to the integral weight matrix

al a3y ... aj ... a)

ai a3 ... a@ ... a2

1.2 Q= .
ko k k k

ab ok ... af ... df

Two such weight matrices €2, Q' € Mgy, (Z) are equivalent if there are A € GL(k,Z) and
w € W(Sp(n)) such that Q' = AQw. Equivalent weight matrices give rise to isomorphic
3-Sasakian quotients pg, (0)/T*(Q') =~ ug' (0)/T* (). The question of whether or not the
converse is true is more subtle and will be addressed elsewhere. The conditions on 2 that
guarantee “nice” behavior of the quotient are given by

PROPOSITION 1.3: [BGMR1] Let S = pug'(0)/T*(Q2) be a 3-Sasakian quotient space. Then
S is an orbifold if the k by k minor determinants

1 1
Ao, -+ Og,
Aal...ak = : #0
k k
Aoy, -+ Og,

for all sequences 1 < ay < --- < ar < n. Moreover, S is a smooth manifold if and only if,
in addition, we have

ged(Aayapirs - Dagdgeapgrs -1 Dageay) = 9



for all sequences 1 < a1 < --- < a5 < --- < ag+1 < n, where g denotes the k" determi-
nantal divisor of €.

An Q € Myy,(Z) that satisfies the two conditions of Proposition 1.3 was called
admissible in [BGMR1]. Recall also that if g > 1 then the T* action is not effective,
and there is a normal subgroup I' of order g such that the factor group T%/T" ~ T* acts
effectively. Thus, we may assume without loss of generality that g = 1, i.e., Q is in reduced
form. The subset of reduced admissible matrices in Mgx,(Z) is denoted by Agxn(Z).
It is invariant under the action of GL(k,Z) x W(Sp(n)). Furthermore, the unordered set
{|As|} of absolute values of all k£ by k& minor determinants is an invariant of Agx,(Z).

Let Q € Agxn(Z). Since 2 is reduced there is a k by k£ minor determinant that is odd.
By permuting columns if necessary this minor can be taken to be the first k£ columns. Now
consider the mod 2 reduction My (Z)— Mpxn(Z32). We have the following commutative
diagram

GL(k,Z) X kan(Z) — kan(Z)

| |

GL(k,ZQ) X ka”(Zz) — ka”(ZQ)

Let Q € Agxn(Z3) denote the mod 2 reduction of Q@ € Agyn(Z). Since the first k£ by k
minor determinant of €2 is odd, the mod 2 reduction of this minor in €2 is invertible. Thus,
we can use the GL(k,Z5) action to put Q in the form

10 ... 0 ag,y ... a
L 6 0 1 0 ai+1 o, a2
00 --- 1 aﬁﬂ .. ak

LEMMA 1.6: The set Agxxn(Z) is empty for n > k + 2 and k > 4.

ProoF: We analyze the second admissibility condition. Since 2 is reduced the second
condition of Proposition 1.3 implies

1.7 (Dy g i1s s Dyt yrs s Do) 7 (0, 4+, 0)

for all sequences 1 < a1 < -+ < a5 < --- < a1 < n, where A denotes the mod 2
reduction of A. Thus, to check admissibility we choose k + 1 columns and look at all k£ by
k minor determinants mod 2. The first set to choose is the first k columns and any one
of the remaining n — k columns. But since A;..., = 1, the second condition of Proposition
1.3 is identically satisfied. Next choose any k — 1 of the first & columns and two of the
remaining n — k columns. The minor determinants Al---j‘---kl’ where 3 indicates the j**

3



column is deleted, have the form Al---j’--- ol = a{ , while those with two of the first k-columns
deleted have the form

g %
al. (%
J

1.8 A s .
l

=

lm ‘ azn

Thus the admissibility condition becomes

. 1 1 J j
a; a a; a
J 4] L mo o l e
1.9 (al y s ag a‘Zn ’ ’ ‘ a;c ag ‘) 7é (Oa 70)
a’
for all 5 = 1,---k, where, of course, the term ‘ é ;” is deleted. This condition is
a a
satisfied if and only if "
1.10 (], a,) # (0,0)

forall j=1,---,k,and k+1 <l <m<n.

Next consider sequences of minors formed from k£ — 2 of the first £ columns and 3 of
the remaining n — k columns (Here we use the fact that n — k > 2). There are two types
of minors, those of the form of (6) above, and

aj a, a
Al s s =gl @l o
111 Al---i---j---l-nmr ay Gy, ap
af ay, af
Then the second admissibility condition implies
af ai G,rli G,i ai ai al. O, G al. Qp, Oy
m r m r - . X .
(DI B A e GO N P B A TP 1 B A4 N (SRR}
a; al l'la; all'lal, al LI L S
l m r 1 m r

where the terms in the 3 by 3 determinants with last row equalltolthe‘ith or jt* row are
deleted. Now this condition implies that for all pairs of triples (a}, a%,, a%) of an admissible

Q we must have

ai al, at 1 11
(1.13) (a{ al. al 7 11 1)
On the other hand 1.10 says:

(i) We cannot have two 0’s in any row of such a triple.

Now suppose that there were two 0’s in a column of a pair of triples. Then by column
permutation the pair of triples must have the form

0 1 1
01 1/
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But then one easily sees that 1.12 does not hold. Thus,
(ii) We cannot have two 0’s in any column of any pair of triples.

Hence, it follows that, up to column and row permutations, that any four triples of
the last n — k£ columns of an admissible 2 must have the form

= O
_ O =
o RS R

So we see that we cannot add another row without violating the above conditions. It
follows that £ < 4. |

We can also use our analysis to prove:
LEMMA 1.15: Let Q € Agxn(Z) and let k > 1, then n — k < 4.

PrROOF: By Lemma 1.6 we need only check this for k = 2,3,4. We consider the case
k = 2 as the cases k = 3,4 are similar. As before, let 2 denote the mod 2 reduction of
Q2. Then by 1.13, and rules (i) and (ii) above up to GL(2,Z) transformations and column
permutations any €2 € Asx6(Z) will have a reduced matrix of the form

One cannot add another column to this matrix since 1.10 implies that this must be (1 ) ,
but this is forbidden by 1.13. ]

Lemmas 1.6 and 1.15 now imply Theorem A. Notice that one could replace Zs by
Zyp for any prime p in Lemma 1.6 and carry out a similar analysis to obtain “mod p”
obstructions to smoothness. However, it is not surprising that the p = 2 bound is the
sharpest, and as we show in the next sections there are no further Betti number bounds.

§2. Some 11 Dimensional Examples.

In [BGM] we constructed 3-Sasakian manifolds obtained by toral reduction for k = 1
for every n and in [BGMRI1] we constructed 3-Sasakian 7-manifolds with arbitrary k.
Thus, to show that Theorem A is sharp we need only construct 11 and 15 dimensional
manifold examples when k£ = 2,3,4. These last constructions give explicit examples of
non-regular 3-Sasakian manifolds for which the Betti number relations given in [GS] for
regular 3-Sasakian manifolds fail as Bielawski [Bi] showed that the regular [GS] relations
can hold for a 3-Sasakian toral quotient if and only if £ = 1.
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We begin by assuming that dim & = 11 and k£ = 4. We take €2 to be in the special
form

2.1 Q= (]14 A),

where 14 denotes the 4 by 4 identity matrix and A € Myx3(Z). For matrices of this form
the first admissibility condition implies that all the entries (a%) of the matrix A are non
vanishing and that all minor determinants are non vanishing. The second admissibility
condition amounts to

2.2a ged(aj,al,) =1
and
ai ai ai||at  a ap Gy Gy ap Gy Gy
L 3 . : . N
2.2b ged(| % L | tme e a] al, dl|,--,|al al, al ) =1
a; al al all'lal, al
l m 1 T m T 1 1 k k k
a; ap,  Qp a; Oy Ay
foralll<i<j<4,and1<l<m<r<3.
Condition 2.2b is equivalent to the condition
2.2¢ cd (| ®L Fm| JOL G ) Gm Gy g
' 8N @ i I'la? aillal, all! ™
l m l T m r

foralll1 <i<j<4,and 1 <[l < m < r < 3. There are six equations of the form 2.2c.
Moreover, it follows from the analysis of the previous section that up to row and column
permutations the mod 2 reduction A of A must take the form of 1.14. Thus, three of the
six two by two minor determinants of A must be even, while the other three are odd. In
addition, three of the six equations of the form 2.2c contain precisely one even two by
two minor, and the remaining three equations have all odd two by two minors. Moreover,
precisely one of the four three by three minor determinants is even and this occurs in the
three equations with all odd two by two minor determinants. The three equations with
an even two by two minor determinant can be automatically satisfied by choosing each of
the three even two by two minors to have determinant that is a power of 2. This leaves
only three equations of the form 2.2c¢ to satisfy.

These equations are still somewhat complicated in their full generality, so we shall
look for a 3 parameter family of solutions with A taken in the form

11 1
2 1 1+2

2:3 A=11 16 1427 |
-1 3 2c

where I,m € Z*, and ¢ € Z. We denote the quotient space by S(c,l, m). This space will
be a 3-Sasakian orbifold as long as the determinant

2.4 A=2(3lc+6+19-271 —7.2m7 1) £,
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An example of a singular quotient that is not an orbifold is S(1, 1, 4). Henceforth, we shall
assume that 2.4 is always satisfied. The three equations of the form 2.2c¢ that are not
automatically satisfied are

ged(7,4c+ 2" +1,2¢—3-21 —3) = 1,
2.5 ged(19,2c +2™ +1,32c—3-2' —3) = 1,
ged(31,2m*! — 2t 4 1,2m — 2% _15) = 1.

One can check that these equations hold if and only if 7,19 and 31 do not divide A. Thus,
we have

PROPOSITION 2.6: The 3-Sasakian quotients S(c,l, m) are smooth manifolds of dimension
11 if and only if 3 does not divide ¢, and neither 7,19 nor 31 divide A.

COROLLARY 2.7: There are smooth 3-Sasakian 11-manifolds S(c,l, m) with second Betti
number equal to 4 for an infinite number of values of the parameters c,l, m.

PRroOF: It is routine to verify that the three parameter infinite family given by

¢ = 14 (mod 21),
l (mod 5),

2.8 7z 1

m # a(c) (mod 18),

where 2%(9) = 22(31c 4+ 6) (mod 18) satisfies the hypothesis of Proposition 2.6. Notice
that as 2 is a primitive root of 19 the equation defining a(c) has a unique solution
(mod 18) for each value of c. i

COROLLARY 2.9: The quotient spaces S(3i,1,m) and §(1,1,m) are never smooth for any
values of 7,1, m.

COROLLARY 2.10: There are smooth 3-Sasakian 11-manifolds with second Betti number
equal to 2 and 3 depending on an infinite number of parameters.

PROOF: Let A be any 4 x 3 matrix of the form in equation 2.3 such that A also satisfies
equation 2.8. Let A(3) and A(2) be obtained from A by omitting any row and two rows,
respectively. Then Q(2) = (Io  A(2)) and 2(3) = (I3 A(3)) are 11-dimensional smooth
examples with k£ = 2 and 3, respectively. ]

REMARK 2.11: We do not claim that the infinite number of 3-Sasakian manifolds con-
structed in Corollaries 2.7 and 2.10 are actually inequivalent as 3-Sasakian manifolds,
although this is quite probably the case. They are, however, inequivalent as toral reduc-
tions which follows from the fact that at least one £ by k£ minor determinant depends
linearly on ¢, 2!, and 2™.



§3. Some 15 Dimensional Examples.

Again we begin by considering the highest possible second Betti number and hence
assume that dim § = 15 and k& = 4. In this case the matrix A of equation 2.1 becomes a 4 by
4 matrix. We choose A to be the matrix obtained by adding a 4th column to the matrix 2.3
so as to make our computations as simple as possible. Some of the computations leading
to our examples stated below were done with the aid of MAPLE symbolic manipulation
program. Thus, we set

11 1 2
2 1 1+28 -1

31 A=11 16 1427 3
-1 3 2c -1

According to the reduction theorem, assuming that all minor determinants are non van-
ishing we get 3-Sasakian orbifolds S(c,l,m) of dimension 15 and second Betti number
by = 4. We need to check the conditions for smoothness of S(c,l,m). Now one easily sees
that all the equations of the form 2.2a are satisfied if 3 does not divide ¢ and m is even.

There are 24 equations of type 2.2c, and four equations of the form
3.2 ng(Mﬂ," -,Mi4,detA) = 1,

where M;; denotes ¢j minor determinant of A. Of the 24 equations of type 2.2c, 14 are
satisfied automatically. Three are precisely equations 2.5, and three of the remaining seven
equations contain only one parameter each. These first three equations are

ged(5,20 — 1,3+ 2! = 1,
3.3 ged(29,2™mt1 —1,2™m — 15) = 1,

ged(7,]2¢ — 3], |4c+ 1]) = 1.

These equations can be solved using elementary number theory. First, since m is even
the second equation is automatically satisfied. The first equation holds if and only if 4
does not divide /, and the third holds if and only if ¢ # 5(mod 7). The remaining four
equations of type 2.2c are:

ged(3,4c+ 28 +1,2¢ -2 — 1)

a4 ged(7,2mt — 2l 1 1,3. 2" 2™ 4 4) =
ged(19,2™ —2H* —15,3. 2 4 2™ + 4) =

ged(25,32¢—3-2™ —3,6¢c+ 2™ + 1)

—_ e e

The four equations given by 3.2 are determined by the determinant of A

3.5 det A =19-2™ — 63 — 148¢ — 11 - 2},
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and the matrix of minor determinants (M;;) is

om+1l L 97 _ 38¢c+25.-20 —3.9™ _ 5 _ 14¢— 21 71 62¢c—7-2™ + 12 +19-2!

—7-2™ + 18 4+ 58¢ 2m _ 9¢ — 1 11 30c — 2mt2 4 15
—7-2' 9+ 6¢ 2 + 10c+ 4 19 —2¢—2t2 1 3
—29.20 —4543.2m 5.2m 42l 1 74 —15.-2t —2m 4 15

THEOREM 3.6: Suppose that all entries and all minor determinants of A are also non
vanishing. Then the 3-Sasakian orbifolds S(c,, m) of dimension 15 with by = 4 determined
by (I4 A) are smooth manifolds if and only if the following conditions hold

(1) ¢#£0 (mod 3).

(2) m is even.

(3) L £0 (mod 4).

(4) ¢cZ£5 (mod 7).

(5) 11,19,37,71 do not divide det A.

(6) Conditions 3.4 hold.

PROOF: One only needs to check that if for a fixed row of the matrix (M;;) the number
M;3 divides any entry of the same row it divides all entries of that row. ]

COROLLARY 3.7: For an infinite number of values of the parameters c,l, m there are
smooth 3-Sasakian 15-manifolds S(c,1,m) with second Betti number equal to 4.

PRrROOF: It is straightforward to verify that the infinite family given by

c = 2,
3.8 I =1,
n = 21 (mod 90),

where m = 2n satisfies the conditions of Theorem 3.6. It is helpful to use the Law of
Quadratic Reciprocity and the Chinese Remainder Theorem when checking conditions (5)
and (6) of Theorem 3.6. 1

COROLLARY 3.9: For an infinite number of parameter values c,l,m there are smooth
3-Sasakian 15-manifolds S(c,l, m) with second Betti number equal to 2 and 3.

PROOF: Let A be any 4 x 4 matrix of the form in equation 3.1 such that A also satisfies
equation 3.8. Let A(3) and A(2) be obtained from A by omitting any row and two rows,
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respectively. Then Q(2) = (Io A(2)) and Q(3) = (I3 A(3)) are 15-dimensional smooth
examples with £ = 2 and 3, respectively. ]

We note that Remark 2.11 applies equally well to the 15 dimensional examples. Fi-
nally, it is intriguing to ponder the question of whether there are any 3-Sasakian manifolds
at all that fall outside of the bounds given by Theorem A. A first step towards under-
standing this would be to prove a Delzant type theorem (See [Gui] or [BD]) saying that
any compact 3-Sasakian manifold of dimension 4n — 1 with a T™ action preserving the
3-Sasakian structure must be one of our toral reductions. This is currently under investi-
gation.

Bibliography

[BG] C.P. BoYER AND K. GALick1, The Twistor Space of a 3-Sasakian Manifold, to appear in Int.
J. of Math.
[BGM] C.P. BOYER, K. GALICKI, AND B.M. MANN, The Geometry and Topology of 3-Sasakian Man-
ifolds, J. reine angew. Math. 455 (1994), 183-220.
[BGMRI1] C.P. BOYER, K. GALICKI, B.M. MANN, AND E.G. REES, Compact 3-Sasakian 7-Manifolds with
Arbitrary second Betti Number, submitted for publication.
[BGMR2] C.P. BoYERr, K. GALickI, B.M. MaANN, AND E.G. REES, Positive Einstein Manifolds with
Arbitrary Second Betti Number, submitted for publication.
[Bi] R. BIELAWSKI, Betti Numbers of 3-Sasakian Quotients of Spheres by Tori, Preprint
[BD] R. BIELAWSKI AND A.S. DANCER, The Geometry and Topology of Toric Hyperkédhler Mani-
folds, McMaster Univ. preprint
[GS] K. GALICKI AND S. SALAMON, On Betti Numbers of 3-Sasakian Manifolds, to appear in Geom.
Ded.
[Gui] V. GuiLLEMIN, Moment Maps and Combinatorial Invariants of Hamiltonian T™-spaces, Birk-
hauser, Boston (1994).

Department of Mathematics and Statistics December 1996
University of New Mexico

Albuquerque, NM 87131

email: cboyer@math.unm.edu, galicki@math.unm.edu mann@math.unm.edu

10



