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Non-zero Scalar Curvature Generalizations

of the ALE Hyperkahler Metrics

KRzYSzTOF GALICKI AND TAKASHI NITTA

ABSTRACT: We describe a quaternionic quotient construction of families of self-dual
Einstein metrics with positive scalar curvature on compact Riemannian orbifolds (V-manifolds).
The metrics are the positive scalar curvature quaternionic analogues of the ALE gravitational
instantons constructed by Kronheimer.

1. Introduction

Self-dual and Einstein 4-manifolds are of particular interest to both mathematicians
and physicists. Many new examples of such geometries were discovered through the de-
velopment of the Euclidean approach to quantum gravity. There the zero-temperature
vacuum state of the gravitational field can be thought of as a Ricci-flat metric with
certain asymptotic behavior. This leads to, so-called, asymptotically locally Euclidean
(ALE) Ricci-flat manifolds. A special case of such geometries, which is now completely
understood, are the hyperkahler ALE instantons. These are Riemannian 4-manifolds with
SU(2) holonomy group for which some neighborhood of infinity has a finite covering U
diffeomorphic to the complement of the unit ball in R*. If z; is the natural coordinate
on R* then the metric 9ij = 0;5 + hi; on U tends to the standard Euclidean metric with
OP(hij) = O(r=*7P), where r is the proper distance. The fall-off conditions given here
are these of [1]. (Weaker conditions can often be found in some mathematical physics
literature referring to the ALE metrics, see for example [2]).

The first example of the hyperkahler ALE metric was constructed by Eguchi and Han-
son [3]. It describes the Kahler Ricci-flat metric on the cotangent bundle of the complex
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projective line. At the same time Calabi [4] gave a description of hyperkahler metrics on
T*CP(n) and the Eguchi-Hanson metric is precisely the Calabi metric on 7*CP(1). More
examples were given later by Gibbons and Hawking [5]. They were called multi-Eguchi-
Hanson metrics. In the independent work of Hitchin [6] the multi-Eguchi-Hanson metrics
were obtained as metrics on the minimal resolution of the singularity of C?/Zg. In the
same work Hitchin conjectured the existence of such metrics on the minimal resolution
of bbc?/T" where T' C SU(2) is any discrete subgroup. This conjecture was finally proven
by Kronheimer [1, 7]. He used the quotient techniques of Hitchin et al. [8] to describe
these metrics explicitly and showed that any ALE hyperkahler manifold is isometric to a
member of one of the families obtained in his construction.

The ALE hyperkéhler manifolds are examples of self-dual Einstein manifolds for which
classification results were obtained. In general case our understanding of such geometries
is far from satisfactory. Very little is known about non-compact case. If the manifold
is compact, we have the well-known result of Hitchin [9] which says that, if the scalar
curvature k of a compact self-dual Einstein manifold M is non-negative, then

(i) M is isometric to S* or CP? with their canonical metrics (k > 1),

(ii) M is either flat or its universal covering is a K3 surface with the Calabi-Yau metric
(k=0).

Again, not much is known if M is compact and has negative scalar curvature, and
the only examples here are compact quotients of the hyperbolic 4-ball.

If M is not a manifold but rather a V-manifold, or a Riemannian orbifold, then the
Hitchin’s result no longer applies. Examples of infinitely many non-symmetric self-dual
Einstein metrics with positive scalar curvature on compact orbifolds were constructed by
Galicki and Lawson [10]. All of them are metrics on the weighted projective spaces CP> .
However, even with the powerful technique of the quaternionic quotient, it is not easy to
find new examples of such metrics with only orbifold singularities. In this paper we show
that the orbifolds of Galicki and Lawson are special cases of a more general construction.
For any ALE family of hyperkdhler spaces M (T, &) we obtain a new family of compact
self-dual Einstein orbifolds with positive scalar curvature O(T', £, b). Just as in the case of
the Kronheimer’s construction [1, 7], the metrics are given only implicitly as quaternionic
quotients of some quaternionic projective space. Their explicit calculation would involve
solving a large set of quadratic constraints. However, in principle, our orbifolds provide a
large family of local self-dual and Einstein metrics with positive cosmological constant.

The paper is organized as follows: In Section 2 we review the necessary facts about
the geometry of the hyperkahler and the quaternionic Kahler quotients. In Section 3 we
describe our construction of O(T', £, b). In Section 4 we discuss the quaternionic associated
bundle of O(T,&,b) and its twistor space. Finally, in Section 5 we describe some simple
examples.



2. Hyperkahler and Quaternionic Kahler Quotients

We begin by recalling basic definitions of hyperkahler and quaternionic Kahler ge-
ometries. We also briefly review the quotient constructions of [8] and [10].

Let (M, <-,->) be a hyperkédhler manifold, i.e., M is a 4n-dimensional Riemannian
manifold with three parallel complex structures J* € End(T'M),i = 1,2, 3 where

JioJk = gtk 1 ¢iki Ji, (2.1)

Let the metric <-,-> be Hermitian with respect to all three complex structures. We can
define three symplectic forms w*(X,Y) = (J!X,Y), X,Y € (TM). Let Gx M — M
be a compact action on M by isometries commuting with all three complex structures.
We call such isometries hyperkahlerian. Let g be the Lie algebra of G. Then there is a
hyperkahler moment map

p=plit p?j+ ks M — g*®esp(1), (2.2)

defined as ‘ '
yw' =< du',V >, (2.3)

where V € g@ I'(TM).

Let £ be an invariant element of g*®gsp(1) under the coadjoint action Ad* ® id of

G. Now, suppose M (€) = p~1(¢)/G is a smooth Riemannian manifold. Consider the
inclusion and projection maps

7 —~

M < (&) = M(€). (2.4)

THEOREM [8] 2.1: If M (§) is a manifold, then its induced Riemannian metric is hy-
perkahlerian.

The above construction was recently used by Kronheimer to obtain families of the
hyperkahler ALE spaces for all discrete subgroups I" of SU(2) (cf. [1, 7]). We describe his
construction using quaternionic notation and leaving out details. We refer the reader to
the original articles.

Let M = HI'l be the |I'|-dimensional quaternionic vector space, where |I'| is the order
of I'. For every I', one can uniquely define a Lie group G(I') C U(|T'|)/U(1) and its
representation in Sp(|T|)

GI)>g9 — Alg) € Sp(|T)). (2.5)
The group G(T') acts on HI'l 5 w by hyperkihler isometries as
g-w=A(g)w. (2.6)
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The momentum mapping p: HT — g*®gsp(1) is defined as follows
< p(w), X >= WdA(X)w, (2.7)

where A(g) = exp(dA(X)), X € g, and <-,- > is the natural pairing on g* x g. One obtains
the Kronheimer’s ALE spaces M (T, £) as the quotient of p=(¢) = {w € HI'l : p(w) = ¢}
by G(T'). The quotient is a smooth Riemannian manifold if and only if £ is an element of a
“good set” (see [1]). The set of all invariant elements of g* Qg sp(1) is given by t* ®z sp(1),
where t is the Lie algebra of the center of G(I'). As t is identified with the Cartan
subalgebra of one of root systems A,,, D,,, Fg, E7, Eg associated to the set of all irreducible
representations of I', the “good set” consists of £ € t* ®; sp(1) whose components are
regular.

In the next chapter we will demonstrate that one can generalize this construction
to obtain non-zero scalar curvature quaternionic analogues of all the hyperkdahler ALE
spaces. First, let us recall the quaternionic reduction of Galicki and Lawson [10].

Let N be a 4n-dimensional quaternionic manifold. There is a quaternionic structure
on N, i.e., a rank 3 vector bundle V C End(TM) of endomorphisms in a local frame
described by J1,J2,.J3 satisfying relations (1.1). Let g be a Riemannian metric on N,
Hermitian with respect to J', J2, J3. Then we can isomorphically identify the bundle V
with a subbundle of A2T*M spanned by w?, w?, w3. Now Q = w! Aw! +w? Aw? + w3 Aw?
is a globally defined 4-form on N. If VQ = 0, where V is the Levi-Civita connection of g,
then the holonomy of N reduces to a subgroup of Sp(%)-Sp(1) and N is a quaternionic
Kahler manifold.

Let G act on N by quaternionic isometries, i.e., preserving €2, and let the scalar
curvature £ of N be non-zero. As demonstrated in [10], for any vector field Vy of the
G-action on N generated by X € G there exists a unique section fyx of the bundle V
defined as

Vic= Y wa(Vy)®uwa. (2.8)
a=1,2,3
We define a “zero level” set as
NOf'0)={yeN: fx(y)=0, X €G}. (2.9)

THEOREM [10] 2.2: If the quotient f~(0)/G is a smooth manifold, then its induced metric
is quaternionic Kahler.

As in the previous case, both the metric and the quaternionic structure are induced
by the inclusion and projection maps. In the case when the action of G on f~1(0) is not

free but only locally free, the quotient yields a quaternionic Kahler orbifold.

Using this theorem one can obtain families of compact 4-dimensional orbifolds O, 4(1),
¢, p €Z, q<p, (¢p) =1, with self-dual Einstein metrics of positive scalar curvature.
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Let N = HP™ 3 [u,,u] and let G = U(1) act on N as follows:
[ug, u] — [e?Ptug, etul. (2.10)
The zero level set for this action is
£7H0) = {[uo,u] € HP™ :  ugipug +'Wiqu = 0} (2.11)
and

Op,q(n) = f7H(0)/U(1).

The singular structure of O, 4(n) was described in [10, 11]. O, 4(1) is a 4-dimensi- onal
compact orbifold with positive scalar curvature self-dual Einstein metric at all regu-
lar points. The metric is not locally symmetric and O 4(1) is smoothly equivalent to

CP3, prqpiq for (p+¢) odd and (CIP’;,,;_Q,HTQ for (p + q) even. The orbifold O, (1) is

an analogue of the Eguchi-Hanson hyperkahler metric which is I' = Zs case in the Kron-
heimer’s construction. In Section 3 we will see that this is a special situation. There are
orbifold analogues of all other hyperkédhler ALE spaces.

3. Quotient Construction of Orbifolds

Consider the quaternionic projective space P(HxHIT!), where I is a discrete subgroup
of SU(2). Let the Kronheimer group G(T") act on P(H x HI'l) as follows

GIT)>g : g-[ug,u] = [b(g)uo, A(g)u] (3.1)

where A : G(I') — Sp(|T'|) is the representation of G(I') in Sp(|T'|) as in (2.5) and
b: G({) — Sp(1) is a group homomorphism. The above action is well-defined on
P(H x HI'!) for any choice of the homomorphism b. The zero section level for this action
can be described by the following constraints

HPT 5 £71(0) = {[uo, u] € HPT! : wodb(X)up + TdA(X)u=0,X € g}, (3.2)
where g is the Lie algebra of G(T').

LEMMA 3.1: Let db(X) = —&(X), (db= —¢), & € g* @ sp(1). The action (3.1) on f~*(0)
is then locally free if £ is in the Kronheimer’s “good set”.

PROOF: The vector field on f~1(0) associated to X € g vanishes if there exists A € H*

such that
(db(X)ug, dA(X)u) = (ug, u)A. (3.3)

Take the Hermitian product of the both sides with (ug, u)
Todb(X)ug + TdA(X)u = (Juo|® + [u/*) A (3.4)
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However, the left-hand side in (3.4) vanishes on f~1(0) and therefore A = 0 as |ug|?+|u|? >
0. Hence, the vector field Vi vanishes on f~1(0) € HPI'l if and only if (db(X)uo, dA(X)u)
= (0,0).

We need to consider two cases:

Case 1. Let Uy € HP!'l be an open set such that ug # 0. Since ug # 0 then db(X) = 0.
Let w = uugy '. In terms of w we can write

YO NUy = {[1,w] : WdAw = &). (3.5)

But if £ is in the “good set” then the action of A(g) on w is free and therefore its vector
field dA(X)w is nowhere zero. Hence dA(X )u cannot vanish on f~1(0) N Up.

Case 2. Let Uy = HPITI \ Uy. Then
Yoy Ny = {[0,u] e HP'! :  fWdAu = 0}. (3.6)

However, as

fueH" : %dAu=0}/G()~C?/T

dAu # 0 unless u = 0. This is because the action A(g)u, u € HI'l is free on {u € HI' :
fadAu = 0} away from u = 0 (see [1]).

Since 0 = u & f~1(0) NU;, dA(X)u # 0 there and the action of G(T) is locally free
on f~10)NU;. 1

It follows now from the Theorem 2.2 that
THEOREM 3.2: If db(X) = —&(X) where b: G(I') — Sp(1) is a homomorphism and ¢ is
the Kronheimer’s “good set” then O(T',&,b) = f~1(0)/G(T) is a compact 4-dimensional
orbifold with self-dual Einstein metric of positive scalar curvature at all regular parts.

The condition db = —¢& clearly puts further restrictions on £&. We observe that,
according to the result of Salamon [12], the twistor space Z(I',£,b) of O(T',&,b) is a
compact Kahler-Einstein orbifold of complex dimension 3 and of positive scalar curvature.
We will discuss the quotient construction of Z(I', &, b) in the next chapter.

Let us briefly describe the relationship between the Kronheimer’s ALE spaces and

our orbifolds O(T,&,b). One can consider two different actions of the group G(T') on
f_l(O) NUy C HITI:

p:G(T) x f7H0) 3 (9,w) — A(g)w € f7(0),
p':G(T) x f7H0) 3 (9, w) — A(g)wb(g) " € F71(0). (3.7)
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Then the the Kronheimer’s ALE space is obtained as the quotient of f~1(0) Ny by the
first action and our orbifold O(T', &, b) with one point removed (ug = 0) is the quotient of
the same space by the second action. We have

M(T,¢) <= fYo)nty 25 O,&b)\ {pt.}. (3.8)

Let us point out that, although topologically both M(I',¢) and O(T', ¢, b) are quotients
of the same space by p and p’, the metrics on f~1(0) N Uy are different in those two
constructions. In the first case we must take the flat metric on HI' and restrict it to
f~50) NUp. In the second case we take the Fubini-Study metric on HITl ~ HPITI \ {pt.}.

If we replace HPI'| by the quaternionic hyperbolic space HHI'| = P(HIT|'1) we get
4-dimensional orbifold Einstein metrics with negative scalar curvature. In this case the
construction can sometimes lead to complete examples [13].

4. The Associated Bundle of O(T, &, b) and Its Twistor Space

Notice that our extension of the action of G(I') on P(HI'I*1) can be lifted to a hy-
perkihler action on the quaternionic vector space HITH! as follows

G(I) x HTHT — git+

g - (up,u) = (b(g)uo, A(g)u), (4.1)

with A and b as before. The momentum map for this action 7 : HTH! — g* ®, sp(1)
reads
< ﬁ(uo, 11), X >= ﬂodb(X)Uo + %dA(X)u, X eg. (42)

LEMMA 4.1: Let db = —§ € g* ®z sp(1). Then G(I') acts freely on ii=1(0) N Uy where
Uy = {(up,u) € HITIHL : wy £ 0} if € is in the “good set”.
PROOF: Since
i71(0) = {(up,u) € H"H : @db(X)up + WdA(X)u=0, X € g}. (4.3)
Let w = uuy ' on i~1(0) N Up. In the w-coordinates
i1 0) N Uy = {(uo, w) e H'IHY ¢ g £0, —¢+ 'WdAw = 0}. (4.4)

Suppose
(b(g)uo, A(g)u) = (up, u).

On = 1(0) N Uy we then must have b(g) = id. Since G(T') acts on (ug,w) € 5~ '(0) N Uy
as follows
(w0, w) — (b(g)uo, A(9)wb(9) ™), (4.5)
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the condition that b(g) = id implies that A(g)w = w. But A(g) acts freely on w if
we{weH": ¢= &dAw} and ¢ is in the “good set”. |

Let Uy = HIT#1\ 2y ~ HITl. Then G(T) acts on U;
('(0) Nh)/G(I") = C*/T. (4.6)

It is easy to see that G(I') act freely on (HI'IH1\ {0}) N #~1(0). Hence

—~

M(r,€) = (@™ {0}) N i (0)) /G(T)

is a smooth 8-dimensional hyperkahler manifold. It follows from the above remark and
the work of Swann [14] that we have the following fiberation

M(T,¢,b) 5 O, ¢, b), (4.7)

where M (T',&,b) is the quaternionic associated bundle of O(T',&,b). O(T',&,b) can also
be interpreted as a certain Sp(1) quotient of its associated bundle where Sp(1) acts by
isometries rotating hyperkahler 2-forms [15, 16]. (Or the H* /Zy quotient, where H* acts
by the quaternionic multiplication from the left). The manifold M (', &, b) represents a
very special case of the hyperkdhler geometry. It admits an isometric Sp(1) action rotating
the hyperkahler structure. Moreover, M (T, &,b) has a hyperkédhler potential [14,15], i.e.,
there exists a function v on M (T',&,b) such that its hyperkéhler metric g is given by
g = V2v. Other examples of hyperkihler manifolds with such properties are furnished by
the instanton moduli spaces and the nilpotent adjoint orbits of complex Lie groups [15].

The twistor space of O(T',&,b) can be expressed as a Kéahler quotient of M (T, &, b)
by the action of any circle subgroup U(1) C Sp(1) with respect to the Kahler structure
that is preserved by this particular U(1). By the theorem of Salamon [12], Z(T,¢,b)
c/zirries a Kahler-Eintein metric of positive scalar curvature. Hence, the Kahler quotient of
M(T,&,b) by any U(1) C Sp(1) is not just Kahler. It is an example of the Kéhler-Einstein
quotient, ¢.e., it is a Kahler quotient of a Kahler-Einstein manifold with the property that
the reduced manifold is Einstein. We can describe all these quotients in the following
commutative diagram:

HITH\ {0} @) M(T,£,b)
| m cpari+t  GOSC Fp e p) VH 7, (48)
v
P(HIT+1) @) O, &,b)

The horizontal double arrows represent the hyperkahler quotient by G(I'), the Kéahler
quotient by G(I') ® C, and the quaternionic Kahler quotient by G(I') respectively. The

8



maps HT+1\ {0} <5 CP2ITI+! and M(T, ¢, b) R Z(T,¢,b) are the Kihler-Einstein

quotients. Finally, CP2IT'+1 =y P(HITI+1) and Z(T,¢,b) - O(T,£,b) are the twistor
fiberations.

5. Some Examples

In the following section we consider some simple examples.

EXAMPLE 5.1: Let I' = Zy. Then G(I') = U(1) and HI'l = H2. Let g = e € U(1). Then
A:U(1) — Sp(2) is given by the diagonal action

et 0
A= &) (5.1)
or \ ‘ .
H? > (uy,up) — (e"uy, e uy).
The hyperkahler moment map reads
,u(ul, ’UQ) = U1ty + Ualus. (52)

Now, it is easy to see that

wH€)/U(1) = T*CB(L).
Consider a group homomorphism b : U(1) — Sp(1). As U(1) is Abelian any such
homomorphism is given by a number p and

g=¢e*  blg)=e", (5-3)

where p = —p € sp(1). By rotating the quaternionic structure on uy we can always choose
p=1and p € Z,. Consider the action of U(1) on HP? € [ug,u1,us] in homogeneous
coordinates

g-[uo, u1, us] = [ePtug, euy, eus). (5.4)
The quaternionic moment map is then
/1,([’11,(), ui, U,2]) = ﬂliul + ﬂ2iU2 + pﬂoiﬂo. (55)

Comparing with (2.11) shows that the quotient

wH0)/U(1) = 0,1 (1).

The diagram (3.8) in this case gives

—~

B\ {0} — M(Z3, p)
i 3 (5.6)

]P(Hz) — O(Zz,p) o~ Op,l(l)



Here M(Zs,p) is the associated bundle of the orbifold Op1(1). For p=1 Oy1(1) = CP?
and its associated bundle is the singular limit of 7*CP2.

EXAMPLE 5.2: Let I' = Z3 and G(I') = U(1) x U(1). If g = (e**,¢e') € U(1) x U(1) we
have .
et 0 0
Alg)=1| 0 €t 0 | e Sp(3). (5.7)
0 0 e

Thus, the Kronheimer’s construction gives the following action of U(1) x U(1) on H3:

g- (ula Ua, U’3) = (eisula ei(t_S)uZa e_it,u’3)
and the hyperkahler momentum maps is
- ﬂliul — ﬂing 2
p(uy, ug, ug) = <ﬂ2iuz _ ﬂgiUg) € R* @ sp(1). (5.8)
Now
w (8) W) <o = Mz, 5.9)

where ¢ € R? ®; sp(1) is in the “good set”, is the two-center multi-Eguchi-Hanson met-
ric. The element £ in the “good set” means here that & # —&;. Now we consider a
homomorphism b : U(1) x U(1) — Sp(1)

b(e®, et) = e'as+ibt ¢ §p(1), a,b € Z. (5.10)
so that the action of U(1) x U(1) extends to HP? > [ug, u1, uz, uz] as
it

i(as+bt)

g-[uo, u1, uz,uz] = [e uo,eisul, ei(t_s)w,e_ us] (5.11)

and the quaternionic moment maps is

ﬂliul — ﬂg’i’U,Q -+ aﬂinO) (5 12)

N([UO; Y1, U2, Ug]) - (ﬂ2iU2 — Usiug + bupiug
Consider the Sp(1)-invariant zero section p~* (8) in HP3. For any a,b € Z\ {0}, a # —b

the action of U(1) x U(1) is locally free on p~1! <8> € HP3. Hence

O(Zs: a,b) = i~ (g>/U(1) < U(1) (5.13)

is a compact 4-dimensional orbifold with self-dual Einstein metric and positive scalar
curvature.
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Let us analyze the singular structure of O(Zs; a, b) in the simple case when a = b = 1.
We write HP? = N3_,U; where U; = {[ug,u1,us2,us] € HP? : wu; # 0}. The action of
U1)xU(1) is

[wo, U1, Ug, Us] (S—t; [ei(s"'t)u(), e uq, ey, e~ %) (5.14)
and p~1 (g) is described by the following constraints

U1tul — Ugtug + Ugtug = 0

Ugi’u,g - Ug?:u,?, + ﬂo?:UO =0. (515)

On Uy we introduce the non-homogeneous coordinates w; = u;ug 1 §=1,2,3 and then

(w1, wa, w3) (o8 (e wie (5 Fh) it=8) et (5Ht) omity o mi(sH1)) (5.16)
wliwl — EinQ = —1
Walwsg — Watwz = —1. (517)

Let us write w; = z; + jy;, @ =1,2,3 where (x;,1;) € bbc® x C3 ~ H3. As
. . 2 2 ..
wiiw; = i(|z|" — |yl*) — 25i(wivi)

we can rewrite both (5.16) and (5.17)

(5] (=it —i(2s+t —i2s —i2t —i(s+2t —is
($17y17$27y27$37y3) (6 T, e ( )ylae Zg, € Y2,€ ( )'7;376 y3)7

(5.18)
22 = Jy2|? — (J&1* — 1a?) =1
|z3]? — |ys|® — (Jz2f* — |y2]?) =1
T1Y1 = T2Y2 = T3Y3- (5-19)

One can easily see that there are three tori which are fixed on Uy by discrete subgroups
of U(1) x U(1) namely

T? = {(2,5:) €C xC iz =z =23 =y3=0, 2|y2|> = |1n|> =2}

T? = {(@i,y) € C X C imy=y1 =ya =y3 =0, |2a|® = |u3|* = 1}

T32 = {(@i,y:) € CxC:xy=2a=ys=y3 =0, |Z/1\2 = \$3|2 =1}
correspondingly by

Ty = Zg = {(s,8) € UQ) x U(1) : (s,8) = (%”, k)
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km

)

Dy =2y = {(5,0) €U x U1 (s,0) = (7, 2

Iy =Z4s=A{(s,t) eU(1) xU1): (s,t) = (km,

The tori T? are single orbits of the U(1) x U(1) action and they project to three isolated
singular points on the quotient. Using methods similar to these of [10], it is easy to see
that in the neighborhood of the singular points our orbifold looks like C2 /Zy, C? /Z4, C? /73
respectively.

There is one more singular point on O(Zs;1,1). One can verify it by repeating the
similar calculations for up = 0. The singularity is easily seen to be C?/T' = C?/Z3. This
singular point is common for all orbifolds O(Z3; a,b), a # —b. Clearly O(Z3;1,1) is not
equivalent to any weighted complex projective 2-space as it has 4 isolated orbifold points.

Similar analysis can be carried out for other quotients. However, the geometry and
the singular structure of O(T', &, b) very much depend on the choice of the homomorphism
b. We do not know how to describe the geometry of our orbifolds for all I'’s and all choices
of b. In the scalar curvature going to zero limit locally our self-dual Einstein orbifold
metrics give the hyperkahler ALE metrics of Kronheimer. It would be interesting to know
if O(T', &, b) are the only possible generalizations of the hyperkidhler ALE instantons with
this property.

Recently Joyce [17] has shown that one can construct a family of self-dual metrics
on the connected sum kCP? as a quaternionic (but not quaternionic Kéhler) quotient of
HP*+! by an action of U(1)¥. In fact, our orbifold O(Zy1,£,b) is a quaternionic Kihler
quotient of HP**! by G(Z;) = U(1)*. The metric on O(Zy41,&,b) is not only self-dual
but also Einstein and, as a consequence of Hitchin’s theorem [4], we necessarily must
have orbifold singularities in the quotient. Joyce uses a different notion of the moment
map and therefore his quotients give smooth self-dual metrics. It would be interesting to
investigate the relationship between the Joyce’s construction of self-dual metrics on kCP?
and our orbifolds O(Zgy1,&,b). We plan to address some of these questions in our future
work.
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