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Duality and Yang-Mills Fields on
Quaternionic Kahler Manifolds

KRrzyszToF GALICKI AND YAT SUN Poon

ABSTRACT: The concept of a self-dual connection on a four dimensional Riemannian
manifold is generalized to the 4n-dimensional case of any quaternionic Kihler manifold. The
generalized self-dual connections are minima of a modified Yang-Mills functional. It is shown
that our definitions give a correct framework for a mapping theory of quaternionic Kéahler
manifolds. The mapping theory is closely related to the construction of Yang-Mills fields on
such manifolds. We also discuss some monopole-like equations.

1. Introduction

A quaternionic Kahler manifold is a Riemannian manifold whose holonomy group
can be reduced to a subgroup of Sp(n)-Sp(1), n > 1 [1, 2]. By definition, such man-
ifold has dimension 4n. As demonstrated by Salamon [2, 3] it can be also viewed as a
higher dimensional analogy of the anti-self-dual Einstein 4-manifold. The bundle of 2-
forms on a quaternionic Kahler manifold M has the following irreducible decomposition
as representation of Sp(n)-Sp(1)

1
A2T*M = S?H @ S’E & <S2H ® 52]}3) , (1.1)

where H and E are vector bundles associated to the standard representations of Sp(n) and
Sp(1) respectively. This decomposition resembles the decomposition of A2T*M into the
direct sum of self-dual and anti-self-dual 2-forms when M is four dimensional. Just as in
the four dimensional case we are able to interpret the decomposition (1.1) in terms of the
Hodge *-operator.
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If the curvature of a connection V is in either the S?H or the S2E part of (1.1) then
V is a minimum of the Yang-Mills functional and if the curvature is in the orthogonal
complement of S?H @ S2E then V is most likely a saddle point. We have found that the
Yang-Mills functional can be modified so that whenever the curvature of V is in one and
only one component of (1.1) the connection is its minimum.

We demonstrate that our definitions are compatible with the description of Yang-
Mills fields on 4-manifolds and that it gives a correct framework for mapping theory
of quaternionic Kahler manifolds. On the other hand, when the energy functional is
interpreted as a classical Lagrangian, our quaternionic mapping theory yields many new
examples of quantum field theories with SU(2) (or SO(3)) gauge symmetry and composite
gauge fields: 4-dimensional sigma models. We show that some fundamental properties of
the well-known 4-dimensional o-models on the quaternionic projective spaces are shared
by such models on arbitrary quaternionic Kahler manifolds. Finally, we demonstrate that
our formalism provides a global picture for the generalized monopole equation of Pedersen
and Poon [4].

2. Duality

Let M be a 4n-dimensional Riemannian manifold whose holonomy group is contained
in Sp(n)-Sp(1) C SO(4n). Then the cotangent bundle of M can be identified with

T*M =E®H,

where E and H are the standard representations of Sp(n) and Sp(1) respectively. Then
S?H is a real rank 3 subbundle of EndT'M. Locally, at each z € M, S?H has a basis
{I, J, K} satisfying

P=J=-1, IJ=-JI=K. (2.1)

The metric g on M is compatible with the bundle S2H in the sense that for each A € S2H,,
g is Hermitian with respect to A, i.e., g(AX, AY) = g(X,Y) for all X,Y € T, M. One
can use the metric to define an isomorphism

EndTM 2T*M  T*M

under which S?H is isometrically embedded in A2T* M. Explicitly, any element A € S?H,
is mapped into w4 by

wa(X,Y)=g(AX,Y), X,Y €T,M.

Let {w1,ws, w3} be a local orthogonal frame of S?H C A2T*M. For convenience of further
computations let us normalize {w1,ws, w3} to have length 2n and then define

Q:wl/\w1+w2/\w2—l—w3/\w3. (22)

This €2 is a globally defined, non-degenerate 4-form on M and it is parallel. It is usu-
ally called the fundamental 4-form or the quaternionic structure on M as its parallelism
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determines reduction of the structure group on M. The condition V2 = 0 can be used
to define quaternionic Kahler geometry in dimension bigger than 4. In dimension 4 we
shall say that M is quaternionic Kahler if it is self-dual and Einstein. The parallelism of
() immediately implies that dQ2 = 0. Recently, Swann [5] showed that the converse is also
true provided dimM > 12.

Pointwisely, €2 can be described as follows. At any point x € M, TxM = E, ®
H,, where E, is the 2n-dimensional complex representation of Sp(n) and H, is the 2-
dimensional complex representation of Sp(1). Let wy and wy be the symplectic forms on
E, and H, respectively and j; and j the quaternionic structures. Then the metric g on
T;M can be expressed as

g =Wgp Qwg- (2.3)

Let {e’, jze/ :j =1,..,n} be a symplectic basis on E, and {h, jh} a symplectic basis
on H,. We define

; 1
w) = \ﬁ(ej ® h + jpe’ ® jh)
J - 4 J
wi = —(e ®h—jej®jh)
v E (2.4
. 1 :
wy = %(JEGJ ®h— ¢ @ jh)
w} = ﬁ(jEeJ ® h+ e’ @ jh).
Now {wg, w{, wg, wg, j =1,...,n} forms an orthonormal basis on T, M. Let
wy = Z(wg Awl 4wl Awl)
j=1
wo = Z(wg Awd —wl Awl)
=1
ws =Y (W) Aw] +wl Awi). (2.5)
=1

Then {w1,ws,ws} forms an orthogonal basis on S?H,. We shall choose 2 as in (2.2). The
orthogonal basis for S?FE, can be written as

YU = (W AW) +wi Awl) + (WhAW) +wiAwl), 1<i<j<n,
27 = (W Aw] —wh Awd) + (Wi AW~ Awl), 1<i<j<n, (2.6)
E’sz (w(’)/\w2+w1/\w§)+(w6/\w2+w1/\w3) 1SZS.]§”7 .
5§ = (Wi Awj — i Aw)) + (Wi Aws —w]Aw)), 1<i<j<n.



>4 give n(n — 1)/2 basis elements and £, A = 1,2,3, give n(n + 1)/2 basis elements
respectively. One can easily check that

1

vol(M) = mQ" (2.7)
vol(M) = mg A%Q, (2.8)

where vol(M) is the volume form of M and “x” is the Hodge *-operator. As a consequence

we have 6
_ -1
*() = =1 1)!9” . (2.9)

Note that all these equations are valid even when n is equal to 1.

DEFINITION 2.1: A 2-form w on M is c-self-dual if

*w=cw A Q" (2.10)

When n = 1 then ¢ = 1, because x> = 1, and the above equation is reduced to
the conformally invariant self-dual or anti-self-dual equations on a 4-dimensional oriented
Riemannian manifold. Notice that the above definition depends on the choice of both the
fundamental 4-form €2 and the constant c. In dimension higher than 4, as we shall now
see, there are three different constants c¢ that give non-trivial solutions to (2.10). Similar
equations were studied in [6].

THEOREM 2.2: Let w be a non-zero c-self-dual 2-form. Then ¢ = ¢;,1 = 1,2, 3, where

6n -1 3

Cn+ 1) 2T 2n-10 T @n-1r (2.11)

C1 =
Moreover, when ¢ = c¢; then w € S?H, when ¢ = ¢y then w € S?E, and when ¢ = c3 then
w is in the orthogonal complement of S?H @& S?E in A?T*M.

PROOF: As the basis for S?H is given in (2.5) and the basis for S?E in (2.6) the proof
is an easy exercise in linear algebra. Therefore we only spell out the constraints on the

coefficients of the 2-form w. Using the orthonormal basis {w}, wi, wj, wg : j=1,...,n}

any 2-form w can be written as

w = Z w(;)(é)wé /\wg.

i7j7a7ﬂ

Then *w = c;w A Q"1 if and only if

)
“OE T O TR0 T Y06 (2.12)



for all 7, 5
YEHE) =YEE T YEE) =YE@ =0 g (2-13)

and

(‘U(z)(é) =0 Vi#j Va,p. (2.14)

Similarly, *w = cow A Q*~ ! if and only if

YO0 T TUEOE YO YOO YO0 T U0 T
“DE) TRy Il (2.15)

(4
YEHE) UG Yed e BaF b

Finally, *w = caw A Q" ! if and only if

2.4)() Zw D= 200 =
Wi =0 Vi,j
{ o; (2)) (2.16)

“HEO TEOG TUHE) TURE Th
&0 e =~ (Coe tene) Vi
)G TEUHE TYOH@ TUmE The

DEFINITION 2.3: Let P be a principal bundle on M with connection V. This connection
is c-self-dual if its curvature 2-form is c-self-dual.

DEFINITION 2.4: For any real constant c , a generalized “Yang-Mills” functional on the
space of connections on P is defined by

1
YMAV) = 5 [ FIP+ EF A0 Pvol(aa), 217
M
where F' is the curvature of the connection.
Y M.(V) has the following Euler-Lagrange equations
dx F + ¢ (d* (F/\Q"—l)) AQPT =0, (2.18)
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Notice that

0< || #F —cFAQ™ Y
= || xF||?> = 2(xF,cF AQ" ') + 2||F A Q™72
= ||F|* = 2c(trF A F) AQ" ™+ E||F A Q™12
= |[F|)? = 16cm?py (P) A Q"1 + 2| F A Q712

or
1
c(87*)p1(P) A Q"1 < S[IIF|* + IF A Q T,

where p;(P) is the first Pontrjagin class of the bundle P on M. Hence, after integrating
over M, we get

87r2c/ p1(P) AQ" Iyol(M) < Y M (V). (2.19)
M
The equality holds if and only if

«F =cF AQ' L,

i.e., if F'is c-self-dual. In such case we shall call the connection V itself a c-self-dual-
connection. As p;(P) is a topological invariant of the bundle P, we define

Q(P) = 872 /M p1(P) A Q" tyol(M) (2.20)

and call it a topological charge of the bundle P. We have just demonstrated that

PROPOSITION 2.5: Any c-self-dual connection is a minimum of the Yang-Mills energy
functional Y M (V).

The following result is due to [7].

PROPOSITION 2.6: Any c-self-dual connection is an extremum of the Yang-Mills energy
functional Y M (V). Moreover, c,- and cp-self-dual connections are minimizing.

PROOF: Suppose V is a c-self-dual connection. Then
d*F=cdx (FAQ" 1) =0
as dF = dS) = 0. Hence, d* F' =0 or V is a Yang-Mills connection.
Let us write F(V) € A2°T*M as
F(V)=F + Fy + F3,
where Fy € S?H, F, € S’E, and F3 € (S?H @ S?E). Then

1
YM(V) = ; /M(||F1||2 + B2 + ([P vol(M)
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because (1.1) is an orthogonal decomposition with respect to the usual norm || - || on
A%T*M. Notice that the topological charge of P can be written in terms of the components
of F(V)

1 1 1
Q(P) = / tr(F A F) AQ" " tvol(M) = / <—||F1||2 + — || + —||F3||2)v01(M).
M M NC Ca c3
Hence, we can write Y M (V) as

2Y M(V) = c1Q(P +/ 1—_ BN + (1= 2B vol(M) =
M “ (2.21)
L

=a1Q(P)+ [ ((omi) 1Bl + (o 5|1 F5]1? ) vol (M)

or
M) =aQ(P)+ [ (1= IR+ (1= DR )vol(a1) -
(2.22)
= aQ(P)+ [ () IBIE + 1707) vol )
or
2YM(V) = c3Q(P +/M 1— — ||F1||2 +(1- —)||F2|| )VOI(M) =
(2.23)

— Q)+ [ ((-2m ||F1||2+4||F2|| Jvol()
M

It follows now from (2.21), (2.22) and Theorem 2.2 that c¢q1- and cp-self-dual connections
are minima of Y M (V). [

We do not know of any examples of c3-self-dual connections but (2.23) seems to
indicate that, if they exist, they will be unstable.

3. Quaternionic maps and sigma models

In this chapter we introduce a new concept of quaternionic maps. We shall do it in such
a way that it generalizes the theory of holomorphic mappings between Kéahler manifolds.
On the other hand we shall see that it is also very natural in studying instantons on 4-
manifolds and 4-dimensional o-models with composite SU(2) (or SO(3)) gauge fields and
Yang-Mills fields on quaternionic Kahler manifolds.

It is well-known that, if one defines a quaternionic Kahler submanifold to be a sub-
manifold with a quaternionic structure given by restrictions, then it is automatically a
totally geodesic submanifold [4]. We shall therefore not insist that the whole quaternionic
structure be preserved by such mappings. Instead we adopt a weaker definition.

7



DEerINITION 3.1: Let M, N be quaternionic Kahler manifolds. A map f from M to N is
called quaternionic if f*S*H, C S%H,,.

The following theorem is in an obvious analogy to the well-known result stating that
holomorphic maps between Kéahler manifolds are energy minimizing.

THEOREM 3.2: On the space of differentiable mappings between two compact oriented
quaternionic Kahler manifolds M and N define the following functional

3
.1 N N _
E(f) = —Z/ (IL7*will? + e/ wi A Q22 )vol(M), (3.1)
2= m
where ¢ = ¢; = %, 4m = dimM, and

Q(f) = /M f*Qy AQm—L (3.2)

Then cQ(f) < E(f) and equality holds if and only if the map f is quaternionic.

PROOF: Let Q,,, 2y be the fundamental 4-forms on M and N respectively. Once they are
fixed Q(f) is a homotopy invariant. As usual, we shall call it the degree or the topological
charge of f.

Let {w1,ws,ws} be a local orthogonal frame on S2H, such that
Ay = w1 Awy + wa A wg + w3 A ws.

We have to show that E(f) is well-defined. If w; =, ¢s;jp; is an SO(3)-rotation of the
frame field on S?H, then pointwisely

3

Froi=> (i) f -

=1

Furthermore,

23: | f*wi||® = zg:f*wi A*frw; = iZ(@g‘f*Mj) A *(¢ikf*ﬂk) =
i—1

i=1 i=1 j,k

3

= 30 3 () (£ Aon ) = 30 D2 (05 ) (£ A2 ) =

=1 7,k =1 j,k

oo



3
_Z(Sgkf pi A f* Mk—Zf pi N *frpg = Z||f*ﬂj||2-
j=1

7.k

Similarly,

3 3
* m—1)12 _ * m—1 . m—1) _
2 lfrenan| So(£rw n@m 1) ax(frws n )

=1

I
NE

Z(¢ij¢ik) (f*uj A Qm_l) A *(f*uk A Qm—l) _

i=1 jk

Mw

(f pi AQTT 1) A *(f pi AT 1) = i 1f* s A Q™2
j=1

J=1

Hence, E(f) is independent of the choice of any normalized frame on S2H, and therefore
well defined. Now the inequality cQ(f) < E(f) follows from

0 <||* frw; —cf*w; A Qm_lH2

which can be written as

(I77eill? + 2 *ws n 277112, (3.3)

1
c<*f*w,~, ffwi A Qm_1> 3

Since
<>I<f*w7;, f*wi A Qm_1> = f*wi A f*wz A Qm_l

and
3

QU =) frwi A frwi,
=1
the inequality cQ(f) < E(f) is simply obtained by summation of (3.3) over ¢ and integra-
tion over M.

Finally, when ¢ = the assertion that cQ(f) = E(f) is equivalent to the

6m
(2m+1)P
requirement that

s f*w = cffw A QT

holds for all w € S?H,, or that f*w € S?H,, by Theorem 2.2., i.e., f is quaternionic. N

EXAMPLE 3.3: If dimM = 4, S?H,, = Ai. As the Hodge *-operator is conformally
invariant, any orientation preserving conformal automorphism is a quaternionic map in
our sense.



In [8] Atiyah gave a geometric construction for all basic SU(2)-instantons, i.e., anti-
self-dual Yang-Mills fields on the Euclidean 4-sphere with topological charge —1, as follows:
The Euclidean 4-sphere is viewed as the quaternionic projective line HIP!. The tautological
bundle is the bundle H with charge —1. The natural connection V of H is anti-self-dual.
Let f be an orientation preserving conformal automorphism which is not an isometry.
Then f*V, the pull-back connection on f*H, is a new anti-self-dual connection.

ExAMPLE 3.4: The above example can be easily generalized as follows: The quaternionic
projective space HP™ has a tautological bundle H. By definition, any element of GL™(n +
1, H) is an orientation preserving quaternionic linear map. In other words, if f € GL* (n+
1,H) is considered as an automorphism of HP™, then f*H is isomorphic to H. It follows
that f*S2H = S?H and hence f is a quaternionic map. As the natural connection V on
H is c;-self-dual, so is f*V. Besides, as long as f is not an isometry, f*V is not gauge
equivalent to V. We do not know if these are all ¢;-self-dual connections on HP™.

ExAMPLE 3.5: Another well-known example of a mapping which in our language is quater-
nionic is a general SU(2)-instanton over 4-sphere with the topological charge k [8, 9]. The
S2H bundle on the quaternionic projective space HP* has a canonical Sp(1)-connection
and all instantons over S* are induced by an appropriate choice of f : S* — HP*. In
fact f can be described explicitly as follows: If u € HP* is a local (Fubini-Study) quater-
nionic coordinate on the quaternionic projective space and z € S* is a local quaternionic
coordinate on the 4-sphere identified with the quaternionic projective line HP! then

u(z) = [X- (B — mﬂ)]T (3.4)

where A = (A1,...,\x) is a quaternionic row vector, u is a quaternionic column vector,
B is a symmetric quaternionic n X n matrix, T denotes quaternionic conjugation and
transposition, and (A, B) are subject to the following two conditions

Im(B'B 4+ XTX) = 0

(Va:EJHHP’1 B—z1)=0, X-£=0 where EEH’“) = £=0. (3:5)

In the same way k-instantons over the complex projective plane can be generated by
quaternionic maps from bbcP? — HP2* [10, 11].

The energy functional (3.1) may also be interpreted as an SO(3) locally gauge in-
variant lagrangian of an interesting class of nonlinear field theories called o-models. In
particular, if dimM = 4, one can think of M as a physical, possibly curved, space-time
and f(x), x € M, becomes an N-valued classical field with the action functional given by
E(f). E(f) is manifestly invariant with respect to the global coordinate transformation
on M (diffeomorphisms of M) as well as it is gauge invariant under the following gauge

transformations (f*wi) = Z By (x) (f*wj)w’ (3.6)
J
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where ®;;(z) is a local SO(3) transformation and ( f*wz) is the curvature 2-form of a

gauge field A; on M defined as follows
d(f*wz) = ZeijkAj A frwg. (3.7)
3.k
The gauge potential 1-form on A; transforms in the usual way

6 (cigpAr) = —d®s (). (3.8)

A;(f) depends on the choice of f(z), i.e., it is a composite gauge field. If N = HP" and
u € HP™ as before then

uf-du—duf-u
14+uf-u

A(u) = —% = ’LAl +]A2 —+ kA3

This particular example was introduced and extensively studied by Giirsey and Tze [12].
Here we see that many interesting global and local properties of HP™-model are common
for a large class of field theoretical models based on E(f). All of them have duality
equations built in and all possess global topological invariants.

4. Generalized Bogomolny equations

In this section we discuss some special solutions of the c-self-duality equations. If M =
R* > (x¢, 1,2, 23) and P is a principal bundle over M then one can study zg-invariant
solutions to the usual self-dual equations. They are called time invariant instantons or
monopoles. In our case, let M = R* ~ R* @ R* 5 {z,}!7%-- P be a principal bundle
over M, and let Y M.(V) be our Yang-Mills functional. In an obvious analogy to the 4-
dimensional case we can study zf, invariant c-self-dual connections on M or “c-monopoles”

on R?® ® R™. Let us start with the following observation.

PROPOSITION 4.1: Let M = R* ® R be the 4n-dimensional Euclidean flat space with
global linear coordinates z*,, « = 0,1,2,3; i = 1,...,n. For any (z1,...,z,) in R* we
define
p: R* - R'QR"
by | |
(xo, X1, T2, 3) —> TV = Tox'. (4.1)
Suppose P is a principal bundle over M with connection V and curvature F'. Then p*V

is an anti-self-dual connection on p* P if

1

S —
i 2n—1)!

FAQM Y (4.2)
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i.e., F' is co-self-dual.

PROOF: In the z¢-coordinates dz!, is exactly the 1-form w? of (2.4). Now a 2-form w

satisfies the equation
1

_ n—1
= 7(2n—1)!FAQ
if and only if
1
F:—é*(F/\*Q). (4.3)

Using Theorem 2.2 we get the following solutions

oo =""oe oo ~foefoe = foe "
Fow =Foe)y Vil wa
Fye = ey Vs e ba# b

Let us denote the components of p*F by F,3. As a consequence of the chain rule we get
— (9 A
Fag = sz:m T F(é)(fa) (4.5)

and therefore
Fri — E I Foan gy = — F
01= 2 TEEE () T T

i,J

Fin = 32" F) () = Fia
2,]

_ Lo d B —
F03 = ZLC T F(é)(f:,) = F12. (46)
0]
In other words, p*V is an anti-self-dual connection. ]

Recently, Pedersen and Poon used twistorial approach to find a generalization of the
Bogomolny equations [5]. They introduced Yang-Mills-Higgs equations on R® @ R™. If
one considers monopoles on R? as time invariant instantons on R* the following simple
geometric description of generalized monopoles comes with no surprise.

PROPOSITION 4.2: Let a:f“ p=0,1,2,3; ¢+ =1,...,n be a global linear coordinate on
R* @ R” and let
p: REQR* — REQR"

be a projection
(.7)'0,.’131,.’172,.’173) ($1,$2,$3)-
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If (V, ®) is a generalized monopole then

V' =p'V 4+ dldaf (4.7)

is a cy-self-dual connection. Conversely, any cy-self-dual connection that is x}-invariant
determines a solution of the generalized monopole equation.

PROOF: The curvature F' of the connection V' is given by

F'=p'F + ) (V®) Adaf) + Z[qﬂ &7 |dx A da), (4.8)
J Z<.7

where F' is the curvature 2-form of V. Now, using equations (4.4), we get

VOP =Foe Yoo = Foe Vo =Fue Vi
F(i)(i) = %[qﬂ,qﬂ'], Vi,j; a=1,2,3 (4.9)
V(i)q)j = V(é)CI)z Vi,j; o = 1,2,3

which can be written as

)—Zeam qﬂ + 5aﬂ[q>l ®] Vi, j; Va,=1,2,3
G (4.10)
(i)(I)J = V(j)(I) V’L,j; o = 1,2,3.

The converse is obvious. |

We can also obtain “monopole” analogues of c-self duality equations in the ¢; and
c3 cases. The first one is not interesting, however, because it yields n decoupled self-dual
Bogomolny equations. In the second case we can explicitly write down the set of equations

Foe + Py = Xean (V) + V@), vioss v
! , (4.11)

zn:v(i)qﬂ =0 Vo, [®F, ®I] = Z () Visd-
=1

For n = 1 these are just the usual Bogomolny equations with the reversed orientation.
We do not known any non-trivial solutions of (4.11) for n > 1 at the moment. Finally,
let us remark that we could introduce additional invariance and reduce the c-self-duality
equation to 2n dimensions, assuming that the c-self-dual equations on R* ® R" be both z,
and z!-invariant. Then we obtain an analogue of the well-known vortex equation of the
two-dimensional Yang-Mills-Higgs theory. Again ¢y case is the most natural generalization
and we shall address this problem in a future work.
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