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Introduction

Amongst all Riemannian geometries the class of Einstein metrics stands out as per-
haps the most natural and interesting [Bes]. Even so there are still many open questions
about the relation between the topology of a compact manifold and the possible existence
of Einstein metrics. In dimensions bigger than four almost nothing seems to be known in
general. Yet, Einstein metrics on compact manifolds are relatively rare and they usually
appear as part of additional geometric structure which makes their study tractable. In
recent years the first three authors [BGM1,BGM2] have studied a class of Riemannian
manifolds known as 3-Sasakian manifolds which have proven to be a remarkable source
of compact Einstein manifolds of positive scalar curvature. In view of this work several
seemingly unrelated questions regarding the possible breakdown of finiteness and Betti
number bounds come to mind:

QUESTION 1: Do there exist 3-Sasakian manifolds with second Betti number greater than
one?

QUESTION 2: Are there singular Fano varieties with arbitrarily large Picard number?

QUESTION 3: Are there compact Einstein manifolds of positive scalar curvature with
arbitrarily large total Betti number?

QUESTION 4: Are there compact Einstein manifolds of positive scalar curvature which do
not admit metrics of nonnegative sectional curvature?

These four questions are related and it is the purpose of this paper to give an af-
firmative answer to all of these questions by explicit construction. The first question is
of interest in light of the recent bound of LeBrun [Le,LeSa] that for quaternionic Kéhler
manifolds of positive scalar curvature we must have by < 1. It then follows [GS] that for
regular 3-Sasakian manifolds by < 1 also. The methods used to prove this bound relate to
question 2 through twistor geometry. Indeed the bound follows from a result of Wisniewski
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[Wi] about Fano manifolds of large index. Question 2 is of interest in its own right owing to
the result of Mori and Mukai [MM] which says that for smooth Fano 3-folds by < 10. That
an affirmative answer to question 3 implies an affirmative answer to question 4 is a well
known result of Gromov [Gro] that says that if a compact manifold admits a Riemannian
metric of nonnegative sectional curvature then the total Betti number is bounded by a
constant depending only on dimension. In fact, more is true when there is a bound on the
diameter [Gro]. As the total Betti number grows some sectional curvatures must become
more and more negative. The main result of our paper is:

THEOREM A: Let k be a positive integer, and let (a,b) € (Z*)* @ (Z*)* whose components
(a*, b*) are pairs of relatively prime integers for i = 1,-- -, k that satisfy the condition that
if for some pair i,j a* = +a’ or b* = +b’ then we must have b* # +bJ or a* # +a?,
respectively. Then there exist 3-Sasakian manifolds S(a,b) of dimension 7 depending
on (a,b) such that by(S(a,b)) = k. In particular, there exist simply connected Einstein
7-manifolds of positive scalar curvature with arbitrary second Betti number.

Actually we construct a family of 3-Sasakian orbifolds depending on @ integers,
but there appears to be no general algorithm for determining when these orbifolds are
smooth manifolds. It should also be emphasized that the existence of the manifolds S(a, b)
is determined constructively, and that they are generalizations of the 3-Sasakian manifolds
described in example 4.6 of [BGM1].

There are several important corollaries of Theorem A. The first follows immediately
from Theorem A and Gromov’s Theorem [Gro].

COROLLARY B: There are infinitely many compact simply-connected Einstein 7-manifolds
of positive scalar curvature, namely the S(a,b) of Theorem A, that do not admit metrics
of nonnegative sectional curvature. Furthermore, for any negative real number k there are
infinitely many 3-Sasakian manifolds S(a,b) which do not admit metrics whose sectional
curvatures are all greater than or equal to k.

Actually question 4 with the condition “Einstein manifold of positive scalar curvature”
replaced by “nonnegative Ricci curvature” was problem 5 of Yau’s famous problem section
of the 1979-80 Princeton Seminar [Y]. This question was answered affirmatively in 1989
by Sha and Yang [SY], but to the best of the authors’ knowledge our construction gives
the first examples for Einstein manifolds of positive scalar curvature.

Another result relating to the breakdown of finiteness comes from a theorem of Ander-
son [An] which implies there is finite number of diffeomorphism types of Einstein manifolds
of positive scalar curvature with a lower bound on the injectivity radius. Thus using our
examples in [BGM2,BGM3| or those of Theorem A give:

COROLLARY C: There are infinitely many 3-Sasakian 7-manifolds with arbitrarily small
injectivity radius.



It is interesting to compare the examples of Theorem A with our previous examples
[BGM2| where in particular we constructed infinitely many 3-Sasakian manifolds that
are homotopy inequivalent and which admit metrics of positive sectional curvature, but
which by Anderson’s theorem have arbitrarily small injectivity radii. On the other hand
by Gromov’s theorem, Anderson’s theorem, and Theorem A, there are infinitely many 3-
Sasakian manifolds with arbitrarily small injectivity radii which cannot admit any metric
of nonnegative sectional curvature.

Our next corollary is a partial classification result. It follows immediately from The-
orem A and results of [GS].

COROLLARY D: In dimension seven there exist 3-Sasakian manifolds with every allowable
rational homology type.

It is known [BGM1,BGM2] that every 3-Sasakian manifold has two distinct homothety
classes of Einstein metrics only one of which is 3-Sasakian. Furthermore, in dimension 7
both of these metrics have weak G5 holonomy [GS,FKMS]. Thus, we have

COROLLARY E: There exist 7-manifolds with arbitrary second Betti number having metrics
of weak G5 holonomy.

In [BG] it was shown that the twistor space of any 3-Sasakian manifold has the
structure of a Q-factorial Fano variety, and this provides the link with question 2. Thus,
results of [BG] and Theorem A give:

COROLLARY F: There exist Q-factorial contact Fano 3-folds X with by(X) = [ for any
positive integer [.

There is a well known relationship [BGM1,BG| between 3-Sasakian geometry on the
one hand and both quaternionic Kahler geometry of positive scalar curvature and Fano
contact geometry on the other (Here | = k+1 for the [ in Corollary F and & in Theorem A).
But in general this relationship involves Riemannian metrics with orbifold singularities for
both the quaternionic Kahler and Fano geometries. It is the existence of these singularities
that cause the violation of finiteness. This is most easily seen in the Fano contact case
where Wisniewski’s theorem fails in the orbifold category since both the contact divisor and
the anticanonical divisor are now Q-divisors, and the singularity index can be arbitrarily
high.

It is interesting to view our results from the perspective of holonomy. In the case of
an Einstein n-manifold M with positive scalar curvature and irreducible special holonomy
(i.e., M is not locally symmetric and the restricted holonomy group is a proper subgroup of
SO(n) given by the Berger’s classification theorem [Bes|), there are only two possibilities;
M is Kahler-Einstein of positive scalar curvature, or M is quaternionic Kahler of positive
scalar curvature. In both cases there is a finiteness theorem. The first is the boundedness of
deformation types of Fano manifolds by Kollar, Miyaoka, and Mori [KMM)], and the second
is LeBrun’s Finiteness theorem [Le] mentioned above. This contrasts with 3-Sasakian
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manifolds whose holonomy is always the full special orthogonal group SO(4n — 1) [GS].

Another known case where finiteness fails are the homogeneous manifolds of Aloff and
Wallach [AlWa]. Moreover, they admit Einstein metrics of positive scalar curvature [Wa].
However, since they are homogeneous, by is bounded (in fact, by = 1 here). In our case we
have:

COROLLARY G: If the second Betti number by(S(a, b)) = k > 3, the 3-Sasakian manifolds
S(a,b) (of Theorem A) are not homotopy equivalent to any homogeneous space.

Another question related to those mentioned above is whether there exist compact
quaternionic Kahler orbifolds O of positive scalar curvature with arbitrary second Betti
number. In dimension four, these spaces are compact, self-dual, Einstein orbifolds. To
each 3-Sasakian manifold S(Q2) there is a naturally associated quaternionic Kéhler orbifold
O(Q) [BGM1, BGM2].

THEOREM H: Let O(a,b) be the compact, self-dual, Einstein orbifold associated to the
7-dimensional 3-Sasakian manifold S(a, b) given in Theorem A. Then

bs(O(a, b)) = by(S(a, b)) = k.

Hence, there are compact, self-dual, Einstein orbifolds of positive scalar curvature with
arbitrary second Betti number.

We begin our constructions in section one by reviewing the 3-Sasakian reduction
[BGM2] of the standard sphere S*"~1 by a k-torus action. Next, in section two, we
determine necessary and sufficient conditions for the k-torus to act freely on the zero level
set of the 3-Sasakian moment map. Moreover, we determine normal forms for these toral
action.

Since the k-torus is a subtorus of the maximal torus in the group Sp(n) of 3-Sasakian
isometries, the reduced 3-Sasakian manifold S we construct admits an (n — k)-torus of
3-Sasakian isometries. Combining these isometries with the Sp(1) group of 3-Sasakian
isometries generated by the 3-Sasakian vector fields we obtain a larger group of 3-Sasakian
isometries on our quotients. In particular, in the case when n = k + 2, the resulting 3-
Sasakian 7-manifolds S each have a five dimensional isometry group. Taking the quotient
of § by this isometry group gives rise to a 2-dimensional quotient space with a cell structure
represented by a 2-disc whose boundary is a (k + 2)-gon. This in turn gives a natural
stratification of & where the fibres are tori crossed with 3-dimensional lens spaces. This
stratification is described in section three.

Then, in section four we use a Leray spectral sequence to determine the rational
homology of & and thus prove Theorem A. Finally, Theorem H follows from a slightly
modified version of the stratification argument used to prove Theorem A.
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§1. 3-Sasakian Reductions

In this section we review the 3-Sasakian reduction procedure [BGM2| which con-
structs new 3-Sasakian manifolds from a given one. The key to this construction is the
quaternionic quotient described in [BGM1]. With each quaternionic Kahler space O, in a
canonical way, one associates three bundles: the twistor bundle Z, the Swann bundle U
and the Konishi bundle §. The twistor bundle Z carries a complex contact structure and
a Kahler-Einstein metric. The Swann bundle U/ is a hyperkahler manifold with a certain
isometric SU(2) action. Finally, the Konishi bundle § is a 3-Sasakian manifold. (In case
O is a compact orbifold all the bundles exist as V-bundles.) The quaternionic Kéhler
reduction of [GL] has a canonical lift to three other reductions: the twistor space or con-
tact reduction of Hitchin [Hi2|, the hyperkéhler reduction of [HKLR] and the 3-Sasakian
reduction given in [BGM2] and reviewed in this section. In contrast to the better known
quaternionic Kahler and hyperkahler quotients, it should be mentioned that this last re-
duction is effective in producing new compact and smooth manifolds. There is not a single
known example of a hyperkahler reduction which leads to a compact manifold and in the
quaternionic Kahler case such examples are extremely rare.

To begin let (S,9s,£%) be a 3-Sasakian manifold and let (S, gs) denote the con-
nected component of the group of 3-Sasakian isometries. By the embedding theorem
[BGM2], M = S x R* is a hyperkahler manifold with respect to the cone metric gps.
The group Iy(S, gs) extends to a group Io(M,gpr) = Io(S,gs) of isometries on M by
defining each element to act trivially on RT. Furthermore, it follows that these isometries
Iy(M, gpr) preserve the hyperkéhler structure on M. Recall from [HKLR| that any sub-
group G C Iy(M, gpr) gives rise to a hyperkahler moment map p : M—g* ® R3, where g
denotes the Lie algebra of G and g* is its dual. Thus, we can define a 3-Sasakian moment
map

1.1 ps:S — g* @R

by restriction pus = p|S. We denote the components of us with respect to the standard
basis of R®, which we have identified with the purely imaginary quaternions, by p%. Recall
that ordinarily moment maps determined by Abelian group actions (in particular, those
associated to 1-parameter groups) are only specified up to an arbitrary constant. This is
not the case for 3-Sasakian moment maps since we require that the group Sp(1) generated
by the Sasakian vector fields £ acts on the level sets of us. In fact, there is a unique 3-
Sasakian moment map ps such that the zero set pg'(0) is invariant under the group Sp(1)
generated by the vector fields £%, and this moment map is given by the simple expression

1
1.2 < PG, T > = En“(XT),



where 7 € g has associated vector field X7, and * denotes the 1-form dual to the vector
field £€*. We now have:

REDUCTION THEOREM 1.3 [BGM2]: Let (S, ¢gs,£%) be a 3-Sasakian manifold with a com-
pact Lie group G acting on § by 3-Sasakian isometries. Let us be the corresponding
3-Sasakian moment map and assume both that 0 is a regular value of us and that G acts
freely on the submanifold pug'(0). Furthermore, let

vipst(0) — S

and
m:pgt(0) — pg'(0)/G

denote the corresponding embedding and submersion. Then

(S = uz3'(0)/G, js, %)

is a smooth 3-Sasakian manifold of dimension 4(n—dim g) —1 with metric js and Sasakian
vector fields £* determined uniquely by the two conditions

t'gs = ™gs

and

T (€ |5t (0) = €.

In the next section we apply this theorem with S = S**~! and G = TF the k
dimensional torus. We also need the following result concerning 3-Sasakian isometries.

PROPOSITION 1.4 [BGM2|: Assume that the hypothesis of Theorem 1.3 holds. In addition
assume that (S,gs) is complete and hence compact. Let C(G) C Iy(S,gs) denote the
centralizer of G in Iy(S,gs) and let Co(G) denote the subgroup of C(G) given by the
connected component of the identity. Then Co(G) acts on the submanifold pg'(0) as
isometries with respect to the restricted metric 1*gs and the 3-Sasakian isometry group
I(S, §s) of the quotient (S, js) contains an isomorphic copy of Cy(G).

By abuse of notation we denote this isomorphic copy by Cy(G). In the case at hand
G = T*, Co(T*) = T™ the maximal torus of Sp(n). Notice that Co(T*) does not act
effectively on the quotient. The normalizer of the maximal torus, namely, the Weyl group
W(Sp(n)) will also play a role when discussing equivalence between quotients in the next
section.

We end this section with an example. The diagram below describes all the homoge-
neous circle quotients [Bat| (see [BGM2] for details and further examples):
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H™ \ {0} — N
RT c t(C) t(R)
v N e
Sl
L5 gan-1 H* cpr-t — 2 () S,
\ / . \ /
]H]]Pm_l — GI‘z((Cn)
where § = % and Z is the complex flag manifold F, 2 1 = U(n—2)[>{§1n()1)xU(1)'

In the next section we describe a quotient construction of a large family of inho-
mogeneous examples by considering k-dimensional torus actions on spheres. On the one
hand these generalize the inhomogeneous examples S(p) given in [BGM2] since S(p) is
obtained by considering the most general 1-torus action. On the other hand the general
toral quotients are very different as they are never homogeneous, whereas S(p) is actually
homogeneous for p = 1.

§2. Torus Actions on the 3-Sasakian Sphere

Let u = (u1,...,uy) € H*, be the quaternionic coordinates on the n-dimensional
quaternionic vector space H", equipped with the flat metric. Consider the unit sphere

Sl ={uel" | ) Uquq =1},
a=1

with its canonical metric geqn Obtained from the flat metric by the inclusion S47~1 c H".
This sphere has two natural 3-Sasakian structures determined by whether one treats H" as
a right or left quaternionic vector space. We choose the left module structure on H" and
this chooses the right 3-Sasakian vector fields £2. The subgroup of the isometry group O(n)
of the (S*"~1, geqn) that normalizes this structure is Sp(n) - Sp(1) = (Sp(n) x Sp(1))/Z,
where the Sp(1) is the group generated by the 3-Sasakian vector fields £*. The group
Sp(n) - Sp(1) acts on the sphere as:

Sp(n) x Sp(1) x §4n~—t — g4n—1

2.1 ((A, a);u) — Auo !,

where A € Sp(n) is the quaternionic n x n matrix of the quaternionic representation
of Sp(n), and o € Sp(1) is a unit quaternion. As the diagonal Z, acts trivially we see
that Sp(n) - Sp(1) acts on the sphere by isometries. The group Sp(n) is the subgroup of
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the full isometry group which commutes with the 3-Sasakian Sp(1) action, i.e., we have
Iy(S*"~1) = Sp(n). In this paper we shall consider the maximal torus 7" C Sp(n) and
its subgroups acting on S$*"~1.

Every quaternionic representation of a k-torus T on H" can be described by a diag-
onal matrix of the form

2.2

\ 0 HTZ-G:‘)

where (71, ..,7;) € ST x --- x ST = T* are the complex coordinates on 7%, and a? €Z.In
turn this representation defines a k£ X n integral weight matrix

a @l ... a ... a
@ ad ... @ .. a
2.3 Q= .
k k k k
ai as ... aip ... ay

Let {e; };?:1 denote the standard basis for t{ ~ R¥. Then the 3-Sasakian moment map

[BGM2] pg : S4~1—tf ® R® defined by the action with  given by 2.3 is po = > ,u?zej
with

2.4 i (u) = Z Ue 107 U
«

We choose the complex structure in H" determined by ¢ and write the quaternionic coor-
dinates in terms of complex coordinates u, = z4 + woj. The moment map then takes the
form

2.4 i (z, w) = iZaé(\zaP — |wa|?) + QkZaéfu’)aza
« «

where k = i5. We are interested in the zero set of this moment map. Under the appropriate
conditions, 0 is a regular value of ug, so that N(Q) = ,u§1(0) is a smooth compact
submanifold of S*"~! of codimension 3k.

Assuming that N(2) is a smooth submanifold, we are interested in conditions that
guarantee that the T*-action is free on N(Q). Actually this condition is a bit too strong,
since the action may not be effective. So what we want is a free action after quotienting
to an effective action. However, by considering an appropriate notion of equivalence, we
shall show that any ‘good’ action will be equivalent to an effective one. Let us assume
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that no row has all zeroes since this would correspond to a T*~! action, and consider the
(Z) minor determinants

e 31 ag
2.5 Aq, .. .ap = det :
k k

Aoy, -+ Ogy

obtained by deleting n — k columns of (2.
DEFINITION 2.6: Let Q € My, (Z) satisfy
(1) Agyviay, 0,V 1< a1 <+ < ag <n.

Suppose that condition (1) is satisfied and let g be the kth determinantal divisor, i.e.
the gcd of all the k by k minor determinants A, ......q,. Then Q is said to be admissible if
in addition we have

(2) ged(Aayapirs - Daredyapiss - Daya,) = g for all sequences 1 < oy < --- <

ag < - < Qg1 SN

Next we discuss the notion of equivalent T*-actions on S**~! and obtain a normal
form for admissible weight matrices. We are free to change bases of the Lie algebra t;.
This can be done by the group of unimodular matrices GL(k,Z). Moreover, if we fix a
maximal torus 7™ of Sp(n), its normalizer, the Weyl group W(Sp(n)) =~ %, > (Zs)",
preserves the 3-Sasakian structure on $*"~! and intertwines the T* actions. Thus, there
is an induced action of GL(k,Z) x W(Sp(n)) on the set of weight matrices Mgx,(Z). The
group GL(k,Z) acts on Mgx,(Z) by matrix multiplication from the left, and the Weyl
group W(Sp(n)) acts by permutation and overall sign changes of the columns. Actually
we want a slightly stronger notion of equivalence than that described above. If the ¢th row
of Q has a ged d; greater than one, then by reparameterizing the one-parameter subgroup
7/ = 7 we obtain 7’ « = (71)% where gcd{b%,}o = 1. So the action obtained by using the
matrix whose ith row is divided by its gcd d; is the same as the original action. This is
related to the kth determinantal divisor g. We say that a matrix €2 satisfying condition
(1) of definition 2.6 is in reduced form (or simply reduced) if g = 1. The following lemma
says that it is sufficient to consider matrices in reduced form.

LEMMA 2.7: Every weight matrix € satisfying condition (1) of definition 2.6 is equivalent
to a matrix in reduced form.

PRrOOF: By standard theory there are U € GL(k,Z) and V € GL(n,Z) such that

S1 0 0 0 0
0 sy ... 0 O 0
Q=USV where S= ) . . .
0O 0 -+ s 0 ... 0



Here s1, - - -, g are the invariant factors of the matrix Q satisfying s;|s; 11 and s189 - - s =
g. The matrix SV is a k by n matrix with the gcd of the ¢th row equal to s;. Furthermore,
the kth determinantal divisor of the k by n matrix V' obtained by deleting the last n — k
rows of V is one, and so is in reduced form. ]

Henceforth, we shall only consider matrices in reduced form.

DEFINITION 2.8:  Let Agxn(Z) denote the subset of reduced admissible matrices in
Man(Z).

The subset Agxn,(Z) is invariant under the action of GL(k,Z) x W(Sp(n)), and the
unordered set {|Ag|} of the absolute values of all k by k& minor determinants are invari-
ants of this subset. Let m = ming{|A,|}, and let A,, realize this minimum. Then by
transforming 2 by an element of W(Sp(n)) if necessary, we can arrange that the first &
columns of 2 has minor determinant A,,.

Recall (See e.g. [AW]) that a Hermite normal form is a normal form for £ by n
matrices over principal ideal domains R under multiplication by GL(k, R) from the left.
We are working with the classical case R = Z. For any nonzero integer a, we let P(a) =
{0,1,---,|a|—1} denote the set of residues modulo |a|. In our case of the GL(k, Z)-invariant
subset Agxn(Z) the Hermite normal form takes the form:

ai ay ... ap ... a
0 a3 ... af ... a2
2.9 Q= )
0 0 ... aF ... &k

with ai > 0, and if j < i then a? € P(a}). From the standard theory we have

PROPOSITION 2.10: Every Q € Agxn(Z) is equivalent by left multiplication by an element
of GL(k,Z) to a matrix of the form 2.9.

The Hermite normal form is unique when transforming by GL(k,Z), but in gen-

eral there may be several Hermite normal forms when transforming by the larger group
GL(k,Z) x W(Sp(n)). For example, the weight matrices

1 0 -1 2 1 0 -1 1
2 GV T (D)
are inequivalent under both GL(2,Z) and W(Sp(4)) separately, but are equivalent under
the product.
As described above we always choose a normal form such that the absolute value of
the determinant of the first £ by k minor is minimal. Thus, the GL(k,Z) x W(Sp(n))-

invariant subset Agxn,(Z) decomposes as a disjoint union of invariant subsets labelled by
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minima |A,,|, viz.
2.12 Apxn(Z) = | | Akxn(m; Z).
m=1

As the subsets Agxn(m;Z) are somewhat intractable for m > 1, we focus our attention
on the case m = 1. In this case the Hermite normal form gives

PROPOSITION 2.13: Let Q lie in the invariant subset Ak, (1;Z), then 2 is equivalent to
a weight matrix of the form

10 0 a,ch ak
0_ 0 1 0 aj, ap
0 0 1 aﬁﬂ ak

where the all the entries of the last n — k columns are non vanishing. Furthermore, if A,
is unique, then this normal form is unique up to permutations and sign changes of the last
n — k columns.

Our interest in admissible weight matrices is the following:

THEOREM 2.14: Let Q € Agxn(Z), that is Q is a reduced admissible weight matrix. Then
the quotient space N(2)/T* is a smooth 3-Sasakian manifold of dimension 4(n — k) — 1.

The proof of this theorem follows directly from the Reduction Theorem 1.3 and the
following lemma.

LEMMA 2.15: Let Q € My, (Z) satisfy condition (1) of definition 2.6, then
(i) The isotropy subgroup I' C T* of any point of N(Q) is discrete.
(ii) 0 is a regular value of the moment map pg.

(iii) If in addition €2 is in reduced form and satisfies condition (2) of 2.6, then T* acts
freely on N(2).

PRrROOF: The 3-Sasakian version of a standard fact of symplectic reduction says that the
image of the differential Dyug(p) of the moment map at p € N(Q) is ng ® R3 where g,, is
the Lie algebra of the isotropy subgroup at p. So (i) and (ii) are equivalent. We prove (i).
At most n — k — 1 quaternionic coordinates u; can vanish on N () for if n — k of the u;’s
were to vanish the moment map equation would become in matrix notation

U, WUqyy
Q. : =0

Ug, MUy,
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for some indices 1 < a3 < --- < ax < n and k by k minor Q. But by (1) of definition
2.6 Q) is invertible implying @4, %uq; = 0 for j = 1,---k. Then equation 2.4" implies that
all the coordinates u; vanish. But this is impossible since N(2) C S**~1. Thus, there are
k + 1 quaternionic coordinates that do not vanish. Let {«; }f;rll denote the indices of the
non-vanishing coordinates. The equations that determine a fixed point of N(2) are

2.16 HTZ-‘IZ"zl foreacha=cqj, j=1,---k+ 1.
i

This system of k£ + 1 equations in k unknowns 7; can be linearized by taking logarithms.
Writing 7; = e2™% 2.16 becomes

2.17 Zafxti =Ty
i

for each o = «; and some integers 74,. Since all minor determinants are non vanishing
this system has only a discrete set of solutions. Hence, the isotropy groups are discrete

proving (i).

Now suppose that € is in reduced form and satisfies condition (2) of definition 2.6, i.e.,
Q€ Agxn(Z). From above at most n — k — 1 of the quaternionic coordinates can vanish,
so there must be at least k + 1 non-vanishing coordinates u,,. The equations determining
the fixed points of T* are Eq. 2.16 which must hold for all « such that u, # 0. Again let
Q be any k by k£ minor of {2 and let Cx denote the cofactor matrix of €2;. Then inverting
2.17 gives
Agt; = (Ck - 13,

where Ay is the determinant of Q and r = (rq1,---,7,) € Z™. Since the matrix Cy is
integer valued this implies

2.18 |

7

for all minor determinants Ag. But since the gcd of all minor determinants is 1, this implies
7, =1 for allt =1,---k. This proves the lemma, and thus Theorem 2.14. ]

REMARK 2.19: If condition (1) of definition 2.6 holds, but condition (2) fails, then the
quotient N(£2)/T* will be a 3-Sasakian orbifold, but not a smooth manifold.

In general Theorem 2.14 is not yet an existence theorem, since Agxy,(Z) could be
empty. Indeed, we shall show in a forthcoming work that for each k there is an upper
bound on n in order that admissible weight matrices exist. However, in this work we are
only concerned with the case n = k + 2 when the 3-Sasakian quotient is a 7-manifold. So
we now restrict ourselves to this case. Our next result determines precisely the admissible
weight matrices in the subset Agxri2(1;Z). Any such matrix takes the form

1 0 ... 0 o' »t
01 ... 0 a2 b2
2.20 Q=|(. . . . . .
0 0 ... 1 aF b
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In this case the admissibility conditions simplify. The remaining subsets Agxk+2(m;Z)
for m # 1 are more difficult to treat. For low values of k£ it is not difficult to construct
admissible weight matrices by hand, but there appears to be no general algorithm.

PROPOSITION 2.21: Let 2 € Agxk+2(1;Z) be in the normal form 2.20, then €2 is admissible
if and only if ged(a?,b?) =1 for all j = 1,-- -, k, and if for any pairs a* = £a? or b* = £b
then we must have b* # +b7 or a® # +a’, respectively.

PRroOF: To check admissibility we need to select k£ + 1 columns and then look at the ged
of the resulting k£ + 1 minor determinants. If we select the first ¥ + 1 columns or the
k + 1 columns obtained by deleting column k£ + 1, the gcd of the corresponding k£ + 1
minor determinants is identically 1. The remaining conditions are all obtained by deleting
one of the first k£ columns and then considering the corresponding k + 1 k£ by k& minor
(2 v
determinants. So the conditions for admissibility imply that det <Zj II;> # 0 for all

1<i<j <k, and that

- al bt al W
gcd(aJ,bJ,det<aj bj>,---,det<ak bk>):1

J pi
for all j =1, .-k, where of course the term det (Zj Zj ) is deleted. The ged condition is
satisfied if and only if gecd(a’, b?) = 1 for all j = 1,-- -, k, and then the remaining conditions
follow easily from the non vanishing of the corresponding 2 by 2 minor determinants. 1

EXAMPLE 2.22 The following example was first introduced in [BGM1] and it is related to
Kronheimer’s construction of the ALE-spaces for I' = Z1. Consider the weight matrix

1 -1 0 0 a1

0O 1 -1 ... 0 a9
2.23 Qay=1. . . | N

0 0 1 —1 Qg

where a = (ay,...,ag). Clearly Q(a) € Agxk+2(1;Z) and the corresponding 3-Sasakian
quotient §(2(a)) is 7-dimensional. Note that Q(a) is equivalent to a matrix of the form
2.20 with a* = —1 and b* = a; + --- + ax. Condition (2) of the Definition 2.6 is now
automatically satisfied. Condition (1) means that a must be chosen away from a union of
2k(k + 1) hyperplanes in R* defined by

2.24 Vi=01,.,k=1Ve<k—-j a;+aj41+ - +aj; #0.
The construction of S(€2(a)) is related to the quotient construction of the gravitational

instantons of Gibbons and Hawking [GH] and further analyzed by Hitchin [Hil]. The non-
Abelian case is due to Kronheimer [Kr|. We briefly describe the quotient construction
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[HKLR] as described by Kronheimer [Kr] for general I' and then in more details for I' =
Zy11. For any discrete subgroup I' of SU(2) Kronheimer introduces a subgroup G(T') C
U(|T'|) of dimension |I'| — 1 which then gives a linear action on the model flat hyperkéhler
manifold, the quaternionic vector space HI'l. Now G(I') ¢ U(|T'|) and acts on HITl by
hyperkahler isometries. Hence we obtain the hyperkahler moment map

p@) W — g*(T) @ R,

where G*(T') is the dual of the Lie algebra of G(I'). Let T'(I') C G(T") be the center of
G(T). Now, if £ € T*(T') ® R? is in the so-called “good set” then the hyperkihler quotient
M(T,¢) = u()"1(€)/G(T) is a 4-dimensional hyperkéhler manifold. Let us review the
[' = Zyy1 case. Then G(I') = T* C SU(k +1) C U(k + 1) is just the maximal torus in
SU(k + 1) acting on H**! as A(7) matrix multiplication from the left, where

T1 0 0O ... 0

0 71’7’2 0 0
A(T) = . . . . )

0 0 0 ... Tg

and 7 = (71, ...,7%) € T*. The moment map for this action can be easily computed and
one gets .
/’LJ(u) = ﬂjzuj - ﬂj-l—liuj-l-la J=1.5k,

with g =3, p’e;, where {e;}¥_, denote the standard basis for ¢} ~ RF.

Let us denote by ,u,;l(f) the inverse image of some element ¢ = (1, ..., &) € £ @ R3.
We say that £ is in a good set if conditions 2.24 with a; replaced by &; are satisfied.
It can be easily checked (see also [BD] for more general cases of toral quotients) that
T* acts freely on the level set i '(¢) if and only if ¢ is in the good set. The quotient
space M (Zgy1, &) is a simply-connected hyperkéhler manifold diffeomorphic to the minimal
resolution of Kleinian singularity C?/Zg,1. The first and second integral cohomology
groups are HY(M (Zy41,£);Z) = 0 and H2(M (Zy41,£);Z) = &FZ.

Clearly, the 3-Sasakian quotient S(£2(a)) is a modification of the above construction

and it was first discussed in [GN]. Namely, choose a = (ay, ...,ax) € Z* and consider a
homomorphism hg : T* — T, given by

k
ha(T) = H T;-I 7.
=1
This allows one to extend Kronheimer’s action of the 7% on H*¥*! to another action of the
T* on HF*2 ag follows:
(75 (W, upy2)) — (A(T)U, ha(T)ukt2), u e B ugy, € H,

and the hyperkiihler moment map of this action restricted to the S*¢+7 gives the corre-
sponding 3-Sasakian moment map and we get S(2(a)).

14



§3. A Stratification of S(Q2)

In this section we describe a stratification of the orbit space S(Q) = N(Q)/T* in the
case n = k + 2, that is dimS§(2) = 7. To do this we consider the space Q(2) defined as
the space of orbits of N () by the isometry group T"-Sp(1). For the moment we consider
general n. Let Q € Agx,(Z) and consider the manifold N (). It follows from Proposition
1.4 that the groups T™ x Sp(1) and T"~* x Sp(1) act as isometry groups on N(£2) and
S(Q2), respectively. Let Q(€2) denote orbit space N(€2)/T™ x Sp(1). We have the following
commutative diagram

N(Q)

3.1 N N\
Q) — S(Q).

The southeast arrow is a principal bundle with fibres 7%, but the other arrows are not
fibrations. The southwest arrow has generic fibres T™-Sp(1) ~ T™ x S3, while the west
arrow has generic fibres T7"*.Sp(1) homeomorphic either to T"~% x RP? or T"F x §3
depending on 2. The dimension of the orbit space Q(2) is 3(n — k) — 4, and by analyzing
this diagram we shall obtain very simple stratifications of both N(€) and S(€2) in the
case n = k + 2, when dim Q(2) = 2. This stratification is related to the stratification by
orbit types [Bre], but is cruder and will provide the quotient Q(2) with a very simple CW
decomposition. Let us define the following subsets of N(€2) : (Recall from the proof of
Lemma 2.15 that in the case n = k + 2 at most one quaternionic coordinate can vanish.)

No(2) ={u e N(Q)| uq =0 for some a =1,---,k + 2},
N(Q)={ueNQ)| foralla=1,---,k+2, uy # 0 and
there is a pair (uq,ug) that lies on the same
3.2 complex line in H},
Ny(2)={ue NQ)| foralla=1,---,k+2, uy # 0 and
no pair (uq,ug) lies on the same complex line
in H}.

Here the strata are labeled by the dimension of the cells in the resulting CW decom-
position of Q(2). Clearly, N(Q2) = Np(2) L N1(2) U No(2) and N3(2) is a dense open
submanifold of N(£2).

LEMMA 3.3: Let n = k+ 2 and Q € Agxk12(Z), and let py : N(Q2)—Q(Q) denote the
natural projection.

(i) The orbits in Ny(Q) are T*+2.8p(1) ~ T**+2 x S3, and py restricted to Ny(Q) is a
principal T**2.Sp(1) bundle over a two dimensional base space Q2(<).

(ii) The orbits in N1(Q) are T**1.Sp(1) ~ T*+1 x §3.
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(iii) The orbits in Ny(S2) are T*-Sp(1) ~ T* x S3.
The ~ above indicates diffeomorphism.

PROOF: The action of T%+2 x Sp(1) on H**+? is given in quaternionic coordinates u, by
Ug — e¥euyq for a = 1,---,k + 2, where 0 < 0, < 27 and g € Sp(1). This action clearly
restricts to the zero set of the moment map N (). The action is not effective since the
element e« = —1,q = —1 acts as the identity on H**t2. We do get an effective action of
the factor group T%+2.Sp(1).

In the description of Ny(£2) and N1(€2) we can use the Sp(1) action to choose a complex
line in C? for a chosen quaternionic coordinate u,. For example writing u, = zq + WaJ,
we choose ug42 = 2iy2 or equivalently wg42 = 0. Then 3.2 becomes

Noy(2) ={ue NQ)| ug #0foralla=1,---,k+2, and z,w, # 0 for some a},
34 Ni(Q)={ueNQ)|foralla=1,---,k+2, uy #0 and z,w, = 0},
No(2) ={u e N(Q)| uq =0 for some a =1,---, k+ 2}.

We show that T5+2.Sp(1) acts freely on No(Q). The subgroup of Sp(1) that stabilizes
the complex line determined by wy,2 = 0 is an S! given by multiplication from the right,
and the stabilizer in the full isometry group is G = T**2.81, In this case the action of G
on Ny(Q2) is given by

(6a—9)yy

3.5 Zo F ei(9“+¢)za, Wy > €
where e’ parameterizes the S* from the right. At any point of No(Q) there is an o such
that zowa # 0. So if this point is fixed 3.5 forces either the identity or e?® = —1 and
e = —1. But then since for all 3 =1,---,k + 2 either zg or wg is non vanishing we get
that either e = 1 or e¥s = et = —1. Thus, T*+2.Sp(1) acts freely on No(Q2), and
restricting pn to this stratum gives a principal T%*2-Sp(1) bundle.

Now consider the orbits in N7(€2). Again setting wgyo = 0 we have the stabilizer
G = TF*+2.5' and Eq.3.5 gives that e®*+> = e~%, Now since for each a precisely one
of either z, or w, is non vanishing, Eq.3.5 implies that for each o = 1,---,k + 1 we
have et = e*%. Hence, the isotropy group at every point of N1(Q2) is an S, and the
inclusion map ¢ : S'—T*+2.83 has the following form: On the first factor ¢ has the form
7+ (7%, ... 771) where the signs are determined by certain choices. On the second
factor ¢ is the standard inclusion in the Hopf fibration. It follows that the fibres in Ny (2)
are (T*+2.53%)/81 ~ Tk+1.63,

Next we analyze the orbits in No(Q2). Any Q € Agxk+2(Z) has the form 2.20 with
n =k + 2. As far as the equations 2.4’ describing N(Q2) is concerned we can pass from Z
to its field of fractions Q. So for the equations 2.4’ we can choose 2 to be in the form 2.20
by inverting the first k& by & block by an element of GL(k, Q). Now as before if ugya # 0,
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we can use the Sp(1) action to set wgyo = 0. If ugyo is the coordinate that vanishes do
this for ug41. Then our transformed equations for the moment map take the form

121% = |w; > + fi(|zk+1]® = |wit1]?) + gjlzk42/* =0

w;zj + fju_)kszH =0

3.6

for j =1,---,k and f;,9; € Q — {0}. The second equation immediately implies that with
the choices made on N(2) :

(1) If zowqe = 0 for some « it vanishes for all .

From the proof of Lemma 2.15 at most one quaternionic coordinate u, can vanish. So
suppose that u, = 0 then the circle e~ contributes an S' to the isotropy subgroup of
any point of Ny(£2). Moreover, since (1) above holds the analysis for orbits in N (€2) above
shows that the isotropy subgroup of any point in Ny(£2) is the 2-torus T2, so analyzing as
before shows that these orbits are T%-S3. ]

Our next lemma relates our stratification with the finer stratification by orbit types
[Bre].

LEMMA 3.7: Assuming the hypothesis of Lemma 3.3, the stratification N () by orbit
types refines the stratification defined by 3.2 as follows:

(i) N5(Q) is precisely the stratum of principal orbits.

(i) N1(Q) is disconnected and decomposes into components LI¥2 Ny (a,, Q), and each com-
ponent consists of a single orbit type.

(iii) No(Q) consists of k + 2 disjoint copies of the group T*-S3, and each component is an
orbit type.

(iv) There are no exceptional orbits.

PROOF: (i) and (iv) are obvious from Lemma 3.3. Consider the orbits in Ny(2). Recall
that at most one quaternionic coordinate u, can vanish. Suppose ugyo # 0 (if this is the
coordinate that vanishes interchange the role of ugi; and ugi2). As before we analyze
the moment map equations by considering a slice of the Sp(1) action yielding Egs. 3.4.
We need to consider various cases. We assume that both f;,g; > 0. (The other cases are
handled similarly.) First, suppose that ug11 = 0 and choose wgio = 0 as before, then
Egs. 3.6 imply w; # 0,2; = 0 for j = 1,---, k. Moreover, the first of Eqs. 3.6 together
with the sphere constraint determine the moduli

1

3.8 2pal® = s,

9j
ju;* = .
J 1+ 9

The only free parameters are the phases of w; and these determine the T* of the fibre.
So there is a single orbit with fibre T%-53. A similar analysis can be done at the vertices
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u; = 0. In this case which of the coordinates z;, w; vanish depends on the sign of g; f; — fig;,
and one sees again that k phases are undetermined. This proves (iii).

Now consider orbits in N71(€2). Again we use the form 3.4 and set ugy2 = zgy2 # 0.
The isotropy subgroup Gy ~ S! only depends on whether w,, or z, vanish (recall from (1)
above that the product vanishes for all @). Choosing this for each o chooses a component of
N1(€), and this component is a trivial principal T%+1.53 bundle. Hence, on any component
all fibres are equivalent. We could do a similar, albeit more tedious analysis than above,
to count the number of components. However, it will follow easily from Lemma 3.11 below
that there are precisely k£ + 2 components. ]

Since T*+2 is the center of T*+2.Sp(1), diagram 3.1 and Lemmas 3.3 and 3.7 imply

LEMMA 3.9: Let n = k4 2 and Q € Agxr+2(Z), and consider the natural projection
ps : S(2)—Q(R2). Then there is a stratification S(Q2) = Sp(Q) U S1(Q) LI S2(?) such that

(i) The orbits in S3(2) are precisely the principal orbits of type
T*+2.5p(1)

Tk
Moreover, H,(G(Q); Q) = H,(T? x Sp(1); Q).

= G(Q).

(ii) The orbits in 81 () are of the form (G(€2)/S*) and S1(£2) decomposes into components
LFT2S, (a, Q), where each component is an orbit type. Furthermore, the Weyl group

W(Sp(k + 2)) acts transitively on the set of components.

(iv) So(Q2) consists of k + 2 disjoint copies of the form (G(2)/T?) and each component
is an orbit type. Again the Weyl group W(Sp(k + 2)) acts transitively on the set of
components.

(v) There are no exceptional orbits.

REMARK 3.10: The group G(2) defined in Lemma 3.9 is isomorphic to either T2 x Sp(1)
or T? x SO(3). For example, if 2 has the form of 2.20, we see that

G(Q) ~ T? x SO(3) if Y a® and Y b* are both odd
T | T? x Sp(1)  otherwise.

Next we analyze the quotient space Q(2). The stratification given by 3.2 induces a
stratification of the quotient, namely Q(2) = Qo(Q) U Q1(2) L Q2(2). We now have

LEMMA 3.11: Under the hypothesis of Lemma 3.3, the following hold:

(i) The orbit space Q(S) is homeomorphic to the closed disc D2, and the subset of
singular orbits Q1(Q) U Qo(£2) is homeomorphic to the boundary 0D? ~ S*.
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(ii) Q2(R2) is homeomorphic to the open disc D?.
(iii) Q1(S2) is homeomorphic to the disjoint union of k+ 2 copies of the open unit interval.
(iv) Qo(R?) is a set of k + 2 points.

PrOOF: Consider the natural projection ps : S(2)—Q(Q). Since, S(£2) has finite funda-
mental group [BGM2], it follows from Corollary I1.6.5 of Bredon [Bre| that H1(Q(€2),Q) =
0. Moreover, from (v) of Lemma 3.9 there are no exceptional orbits. So as in the proof of
Theorem IV.8.6 of Bredon [Bre] Q(£2) is homeomorphic to the closed disc D2, and the sub-
set of singular orbits Q1 (£2)LUQo () is homeomorphic to the boundary dD? ~ S*. It follows
from (iv) of Lemma 3.9 that Qo(2) is a set of k+2 points. But then Q1(2) ~ 0D?—Q(2)
is homeomorphic to k + 2 disjoint arcs of a circle. The remainder of the lemma as well as
filling the gap in the proof of Lemma 3.7 now follow easily. ]

Lemma 3.11 implies that the stratification of Q(€2) provides it with a fairly natural
CW decomposition. This CW decomposition is depicted in the following diagram.

G(Q)/T?

G(Q)/S? G(Q)/S?

G(Q)/T? G()/T?

G(Q)/S?t G(Q)/St

G(Q)/T? G(Q)/T?

G(Q)/S? G(Q)/S?
G(Q)/T?
3.12. The quotient Q(f2) for £ = 4 with the fibres of ps indicated

§4. The Rational Homology of S(£2)

In this section we restrict our attention to the case where n = k + 2. Thus, each S(2)
is a 7-dimensional 3-Sasakian manifold. As mentioned in the introduction the results of
[BGM2] and [GS1] imply the rational homology of any such manifold is given by

Q ifx=0,7;
4.1 H.(S(Q);Q) { 0, ifx=1,3,4,6;
Q if x=2,5;
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for some integer r. Hence, the only rational homology invariant for these manifolds is the
Betti number b3(S(€2)) = b5(S(2)). Our main result of this section is that every possible
Betti number is realized by the examples constructed by the admissible weight matrices
of Proposition 2.21.

THEOREM 4.2: Let n =k + 2 and Q € Agxr+2(Z). Then

Hy(S(2);Q) = Q° = Hs5(5();0Q).
REMARK 4.3: Theorem 4.2 actually holds in the more general case of 3-Sasakian orbifolds
where the the second admissibility condition fails as explained in remark 2.19.
PROOF: We can use the natural projection pg : S(2)—Q(2) to construct a Leray spectral

sequence converging to H,(S(2); Q). Let B; be the natural CW decomposition of Q(2)
given in section 3 so that, in the notation of Lemma 3.11,

BO = Qo(Q), Bl = Qo(Q) U Ql(Q), and B2 = Q(Q)
Then, we can filter S(Q) by X; = p5'(B;) to obtain the increasing filtration

X() = 80(9), X1 = 80(9) USl(Q), and X2 = S(Q)

The Leray spectral sequence associated to this filtration has E! term given by
El, = Hop (X4, X41;Q)

with differential dy : Hgie( Xy, Xt—1;Q) — Hsyp—1(Xi—1, Xt—2; Q) where we use the
convention that X_; = 0.

To compute these E! terms notice that all the pairs (X;, X;_1) are relative manifolds
so that one can apply the Alexander-Poincaré duality theorem. Hence, by Lemma 3.9,

Hy(Xp;Q = Hy((Sp(1)¥*%Q);
Hy(X1,X0;Q) = H*((S" x Sp(1))"*% Q);
Hy (X5, X1;Q) = H'°(S' x §' x Sp(1); Q).

12

I%

Hence,
Q2 ift=0ands=0
Q2 ift=1and s=0,
Ei, 2 {Q ift=2and s=0
Q? ift=2and s=1
0 otherwise.
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[ J Qk+2 [ J Q2
Qk+2 ° Qk+2 ° Q

0

0 o Qk+2 o QZ
Q@+ Q@+ Q

®
-

Diagram 4.4

The d; differentials, which move horizontally one column to the left in diagram 4.4,
are completely determined by equation 4.1. Thus,

Q ift=0and s=0,3;
QF ift=1ands=1,4;

E?, =
st Q ift=2and s=3,5;
0  otherwise.
s
e Q
[ ] Qk [ ]
Q [ [ ]
o [ ] Q
[ J Qk [ J
Q
® * . t
Diagram 4.5
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Finally, there is only one possibly non-trivial d? differential

2

d
Hy(X2, X1;Q) L H3(X0;Q)

o o

Q — Q.
Equation 4.1 implies d42172 must be an isomorphism, there are no other possible differentials,
so B3 = E*_ and the result follows. ]

It should be possible to refine the computations of this section to compute the integral
cohomology ring H*(S(2);Z), at least in the n = k + 2 case. It appears that, just like in
the k = 1 case, that there is torsion in H*(S(f2);Z) which depends non-trivially on the
weight matrix . This would imply that these S(£2) examples run through infinitely many
distinct homotopy types for each fixed k.

After completing this work we received a preprint from R. Bielawski [Bi] where he
computes the Betti numbers for 3-Sasakian orbifolds of any possible dimension arising as
toral quotients of spheres. As expected the second Betti number of such an orbifold is
equal to the dimension of the torus. However, the existence of smooth manifolds with
n > k+ 2 is much more delicate. For example, the subset Agxx13(1,7Z), defined in section
two, is empty for k > 4. Bielawski’s result implies for example that, in dimension 11, the
Betti number relation by = b4 valid for regular 3-Sasakian manifolds [GS] is not true in
general.
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