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The Twistor Space of a 3-Sasakian Manifold

CHARLES P. BOoYER KRZYSZTOF GALICKI

ABSTRACT. Any compact 3-Sasakian manifold S is a principal circle V-bundle over a compact
complex orbifold Z. This orbifold has a contact Fano structure with a Kahler-Einstein metric
of positive scalar curvature and it is the twistor space of a positive compact quaternionic Kahler
orbifold ©. We show that many results known to hold when Z is a smooth manifold extend
to this more general singular case. However, we construct infinite families of examples with
b2 (£)=2 which sharply differs from the smooth case, where there is only one such 2.

Introduction

Ever since Salamon [4,36] generalized Penrose’s twistor construction to an arbitrary
quaternionic dimension, twistor geometry has played a fundamental role in the study of
quaternionic K&hler geometry. In particular, Salamon [36] showed that the twistor space
of a quaternionic Kahler manifold with positive scalar curvature is a Fano contact manifold
with a Kéhler-Einstein metric. However, it was only recently that LeBrun [28] proved the
following inversion theorem:

THEOREM [28]: Let Z be a Fano contact manifold. Then Z is the twistor space of a
quaternionic Kahler manifold M of positive scalar curvature precisely when it admits a
Kahler-FEinstein metric.

Moreover, there is a 1-1 correspondence between compact Kahler-Einstein Fano contact
manifolds up to biholomorphism and compact quaternionic Kahler manifolds of positive
scalar curvature up to homothety.

It is also well known by now that 3-Sasakian geometry is intimately related to this
setup [6,7]. In fact, the twistor space is just the total space of a certain 2-sphere bundle
over a quaternionic Kahler manifold, and the 3-Sasakian manifold is the associated prin-
cipal SU(2) or SO(3) bundle [6,27]. Thus, LeBrun’s theorem should have a 3-Sasakian
version. However, there is an essential difference. It is now necessary to work in the
category of orbifolds or V-manifolds on the level of the twistor and quaternionic Kahler
geometries. Fortunately, the foundational work of Satake [38] and Baily [2,3] has set the
ground work for doing differential geometry on such objects. Many of the known results
about quaternionic Kahler manifolds and their twistor manifolds carry over to the orbifold
setting. For example, as we shall show below, both Salamon’s construction and LeBrun’s
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inversion theorem have orbifold counterparts. However, since it is 3-Sasakian geometry
that interests us most, one of our main results gives the precise correspondence between
3-Sasakian geometry and twistor geometry. This is carried out in section 4.

Let (S, g,£%) be a 3-Sasakian manifold of dimension 4n + 3. (See [6,7] and references
therein for full details.) Let S! denote the locally free circle action generated by the vector
field £€%. Then S has a one dimensional foliation with compact leaves, and the space of
leaves Z, which we call the twistor space of S, is fairly well behaved. In fact, much more
is true:

THEOREM [6]: Let S be a compact 3-Sasakian manifold of dimension 4n + 3. Then the
space of leaves Z, = §/S! is a compact complex orbifold of complex dimension 2n + 1
with a Kahler-Einstein metric of positive scalar curvature 8(2n + 1)(n + 1). Furthermore,
the local uniformizing groups of the orbifold are all cyclic.

This Theorem is a generalization of the Boothby-Wang fibration to the orbifold set-
ting with a bit more structure. The proof given in [6] is indirect in that it uses the
relationship between 3-Sasakian geometry and quaternionic Kéahler geometry developed
by Ishihara and Konishi [19,20,27]. It is certainly possible to give a direct proof. Since the
circle actions S} and Sg corresponding to £ and &£, respectively are conjugate under an
Sp(1) transformation, one sees easily that the corresponding twistor spaces Z, and Z are
biholomorphic. Henceforth, we shall denote the twistor space by Z without the subscript
and refer to it as the twistor space associated to a 3-Sasakian manifold.

Our twistor spaces “live” in three distinct categories: They are compact topological
spaces; they are compact complex orbifolds; and as we prove in section 3 they are normal
projective algebraic varieties which, as it turns out, are of a type known in Mori theory as
Q-factorial varieties. Each picture has its own particular advantage. We show in section
3, as in the regular case, that as a topological space a twistor space Z is always simply
connected. However, in the category of orbifolds, Thurston [41] has introduced the notion
of an “orbifold fundamental group” ¢ and this does not necessarily vanish for our
twistor spaces. Another important invariant is Pic, the Picard group of line bundles on an
algebraic variety. For our twistor spaces Pic is a free Abelian group of rank equal to the
second Betti number of Z. However, on a complex orbifold there is another group Pic°r®
consisting of equivalence classes of complex line V-bundles. This group always contains
Pic as a subgroup, but carries additional information about the orbifold structure.

Although the natural projection S—Z is not a fibration, it may be expected that
the rational cohomology of S and Z behave as though it were. In this regard we are able
to generalize a result of Galicki and Salamon [15] relating the Betti numbers of S and Z
in the case of regular foliations to our more general setting. The proofs given here use
harmonic theory which hold equally well on orbifolds [2]. Our main result in this regard
is Theorem 2.4 below.

Thus, many results that hold in the regular case still hold in the general case. However,
there are places where the analogy breaks down. The most notable are the recent finiteness



theorems of LeBrun and Salamon [29,30] which stem from the known finiteness theorems
of Fano manifolds. For example, if a twistor space Z is a manifold with second Betti
number by(Z) = 2, then Z must be the flag manifold Fj 5 ,. This is certainly not true
in the non-regular case. In section 5 we give infinite families of what we call “weighted
flag varieties” which have ba(Z) = 2 and are inequivalent as twistor spaces. Nevertheless,
we show that our weighted flag varieties have the same rational cohomology groups as
the homogeneous flag F 5 ,,. Of course, all of the weighted flag varieties are singular, and
their singularity structure is described in section 6. Further, in the regular case we must
have ba(Z) < 2. At the end of section 4 we describe a reduction procedure which, using
Kirwan’s geometric invariant theory [23,32], permits a study of the rational cohomology
of such twistor spaces. We hope to be able to use this procedure to see if the bound on
the second Betti number persists in the non-regular case.

The authors would like to thank Alex Buium for telling us about Q-factorial varieties,
and Jim Milgram and Stephan Stolz for discussions concerning the examples in the last
section. The second named author would like to thank Thomas Friedrich, SFB 288, and
von Humboldt Universitat zu Berlin for their support. Part of this paper was written
during his visit there in November of 1995.

§1. Preliminaries on Complex Orbifolds

In this section we give the necessary background on Riemannian and complex orbifolds
(or V-manifolds). For more details we refer to [2,3,38]. Since we shall deal mainly with
complex orbifolds, we give the definition in the complex analytic category.

DEFINITION 1.1: Let U be an open subset of a Hausdorff space. A local uniformizing
system of U is a triple {U,T', ¢}, where U is connected open subset of C* containing the
origin, I is a finite group of analytic transformations of U, and ¢ : U —U is a continuous
map onto U such that ¢ oy = ¢ for ally € I and the induced natural map of U/T onto
U is a homeomorphism. The finite group I' is called a local uniformizing group. Given
local uniformizing systems {U,T', ¢} and {U',I", ¢'} for U and U', respectively such that
U c U, a biholomorphic map A from U onto its image in U’ such that for any v € T there
isy' €I such that Aoy =+v"o X, and ¢ = ¢’ o X is called an injection. Then a complex
orbifold (or complex V-manifold) is a second countable Hausdorff space X together with
a family F of local uniformizing systems for a collection of open subsets {U} of X that
satisfy:

(i) The open sets {U} for which there exist local uniformizing systems {U,T, ¢} form a
basis for the topology of X.

(i) If {U,T, ¢} and {U’,T", '} are two local uniformizing systems of F such that U C U’,
then there exists an injection A : {U,T', o}—{U", T, ¢'}.

If an injection as defined above is also surjective then the two uniformizing systems
are said to be equivalent. 1t is also straightforward to define the notion of equivalence
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of orbifolds (V-manifolds) [38]. Often we shall say orbifold to mean an equivalence class
of orbifolds. Let X be an orbifold and choose a local uniformizing system {U,T, ¢}. Let
z € X be any point, and let p € ¢~ !(z), then the isotropy subgroup I', € I depends only
on z, and accordingly we shall denote this isotropy subgroup by I',. A point of X whose
isotropy subgroups I', # id is called a singular point. Those points with I';, = id are called
regular points. An orbifold X is a smooth manifold or in the complex analytic category
a complex manifold if and only if I';, = id for all z € X. In this case we can take I' = id
and ¢ = id, and the definition of an orbifold reduces to the usual definition of a smooth
manifold.

Many of the usual differential geometric concepts that hold for smooth or complex
analytic manifolds also hold in the orbifold category. In particular, the important notion
of a fiber bundle.

DEFINITION 1.2: A V-bundle over an orbifold X consists of a bundle By over U for each
local uniformizing system {U,T, ¢} with Lie group G and fiber F (independent of U)
together with an anti-monomorphism hy : I'—G satisfying:

i) If b lies in the fiber over x € U then for eachy € I', h b lies in the fiber over v 1.
Y , _u Y vy

(ii) If A : {U,T,o}—{U',I",¢'} is an injection, then there is a bundle map \* :
By |A\(U)— By satisfying the condition that if v € I', and v/ € I" is the unique
element such that A\ o~y = ~' o X\, then hy(y) o AX* = X* o hyr(v'), and if X :
{U", T, ¢} —{U", T, ¢"} is another injection then (Ao X')* = X* o \*.

If the fiber F' is a vector space and G acts on F' as linear transformations, then the V-
bundle is called a vector V-bundle. Similarly, if F' is the Lie group G with its right action,
then the V-bundle is called a principal V-bundle.

Now by choosing the local uniformizing neighborhoods small enough, we can always
take By to be the product U x F' in which case we say that the local uniformizing system

{U,T, ¢} is fine. Then a V-bundle is determined [3] by the following:

LEMMA 1.3: Assuming the notation used in 1.2, a V-bundle B over X with a fine local
uniformizing system is characterized precisely by the following data:

hy (V) (z,u) = (v '@,y () (@) - u),

A (A(2),u) = (2, Ex(A(2)) - w),

where (z,u) € U X F and ny(vy) : U—G and &y : A(U)—G are holomorphic maps (or
smooth in the real case) that satisfy the following conditions:

(i) o (v2) (7 ' @)nu (1) (@) = nu (ny2) (@).
(i) nu(7)(2)éx(A\(2)) = Ay '2)no () (A(z)).
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(iii) Ex(A(2))éx (A 0 A(2)) = Exror(A 0 A(z)).

We shall be particularly interested in the case of complex line V-bundles in which
case nu (y) and &y are non-zero holomorphic functions. Notice, however, that generally
a V-bundle is not necessarily a fibration, so many of the standard topological techniques
cannot be applied directly.

The notion of equivalence of V-bundles is particularly easy to give [3] in terms of the
data of Lemma 1.3:

DEFINITION 1.4: Two V-bundles By and By over X with the same Lie group G are

said to be equivalent if for each local uniformizing system {U,T, ¢} there is a smooth
(holomorphic) map dy : U—G such that if y € ' and z € U then

(V)9 (z) = Iy (v z)ng (v) (z)

and
EXA (@) (A(z)) = Iy (2)E3 (M=),

where the superscripts 1,2 correspond to the V-bundles By, Bs, respectively.

The trivial V-bundle over X is isomorphic (in the orbifold category) to the product
X x F. In this case we can take ny () = id for all U. This is a special case of what Baily
calls an absolute V-bundle which corresponds to the ordinary notion of a bundle over X.
Baily [3] proves

LEMMA 1.5: A V-bundle B’ is absolute if and only if B’ is equivalent to a V-bundle B
with corresponding functions ny () = id and & invariant under +y for all v € T.

We are particularly interested in equivalence classes of complex line V-bundles over
X, which, in accordance with standard terminology, we denote by Pic®®(X). We have [3]

LEMMA 1.6: The set of equivalence classes Pic™®(X) of complex line V-bundles over X
forms an Abelian group.

PrOOF: Let L, and Ly, be two line V-bundles over X with corresponding functions
ng(v), & and n?(7),£3. Then the product bundle which we denote by L; ® Lo is de-
termined by the functions nf; (v)n (), £3€5. The inverse is also clearly defined and one
can check that the product and inverse pass to equivalence classes. |

The total space of a V-bundle over X is an orbifold E with local uniformizing systems
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{U x F,T*, p*} such that the following diagram commutes:

UxF — U

UxF — U,
where m and 7 are the obvious projections. The injections A* for the local uniformizing
systems of a V-bundle satisfy the condition A*(p,q) = (A(p),gxr(p)(q)) for some smooth

map gy : U—G. If the total space E is a smooth manifold, we call E a desingularizing
V-bundle.

DEFINITION 1.8: Let E be a V-bundle over an orbifold X, then a section o of E over
the open set V C X is a section oy of the bundle By for each local uniformizing system
{U,T, ¢} € Fy such that any x € U,

(i) For each v €T oy(y~'z) = hy(y)ou ().
(ii)) If X : {U, T, o}—{U", IV, ¢'} is an injection, then \* oy (A(z)) = oy(x).

If each of the local sections oy is continuous, smooth, holomorphic, etc., we say that o is
continuous, smooth, holomorphic, etc., respectively. Given local sections oy of a vector
V-bundle we can always construct I'-invariant local sections by “averaging over the group”,
i.e., we define

1
1.9a JlemZJUo'y.
y€er

A similar procedure holds for product structures. For example, if L is a holomorphic line
V-bundle on X, and if ¢ is a holomorphic section, we can construct local invariant sections
ol of LIl by taking products, viz.,

1
1.9b UézmHJUo'y.
s

The standard notions of tangent bundle, cotangent bundle, and all the associated
tensor bundles all have V-bundle analogues [2,38]. In particular, if V' is an open subset of
©(U) then the integral of an n-form (measurable) o is defined by

1
1.10 /a: —/ ay-
v T Jop-10vy

All of the standard integration techniques, such as Stokes’ theorem, hold on V-manifolds.
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Riemannian metrics also exist by the standard partition of unity argument, and we
shall always work with I'-invariant metrics. Moreover, all the standard differential geo-
metric objects involving curvature and metric concepts, such as the Ricci tensor, Hodge
star operator, etc., hold equally well. On a complex orbifold there is a I'-invariant ten-
sor field J of type (1,1) which describes the complex structure on the tangent V-bundle
T X. The almost complex structure J gives rise in the usual way to the V-bundles A™* of
differential forms of type (7, s). The standard concepts of Hermitian and Kéahler metrics
hold equally well on V-manifolds, and all the special identities involving Kahler, Einstein,
or Kahler-Einstein geometry hold. In particular, the standard Weizenbock formulas hold.

Finally, there is associated to every compact orbifold X an integer mg called the order
of X and defined to be the least common multiple of the orders of the local uniformizing
groups.

§2. Harmonic Theory and Betti Numbers

Let {U,T, ¢} be a local uniformizing system for Z, then since I' C S, the induced
metric gy on U is I'-invariant. So Baily’s generalization [2] of harmonic theory applies
to the compact complex orbifold Z. More generally we let X denote a compact complex
orbifold with a Hermitian metric invariant under the local uniformizing groups. Let A" (X)
and AP?(X) denote the C°°(X)-module of smooth sections of the V-bundles of exterior
differential r-forms and exterior differential forms of type (p, q), respectively, and let QP
denote the sheaf of germs of holomorphic p-forms on X. By [2] the following Laplacians
are well-defined self adjoint elliptic operators on the appropriate Sobolev completions of
A" (X) and AP9(X), respectively,

2.1a A = dd + dd,

2.1b. O = 09* + 9*.

In the usual way we define the complex harmonic spaces H"(X) = Ker A and HP9(X) =
Ker [. Then Baily’s generalization of Hodge theory gives:

BAILY-HODGE-DOLBEAULT THEOREM: Let X be as described above. Then the following
isomorphisms hold:

H"(X,C) ~ H'(X),
HY(X,QF) ~ H2Y(X) ~ HP(X).

In particular, these groups are finite dimensional, and give well-defined Betti and Hodge
numbers, viz.,

by (X) = dimc H" (X, C) = dimcH" (X),
WPY(X) = dime HY(X, QF) = dimeHP1(X).
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Here H"(X,C) denotes de Rham cohomology, HE?(X) Dolbeault cohomology, and
H(X,QP) denotes the corresponding sheaf cohomology. There are many important con-
sequences of the above theorem. We list several below:

POINCARE DUALITY: There are conjugate linear isomorphisms
H"(X,C) ~ H™ "(X,C),

where m is the real dimension of X.

SERRE DUALITY: Let FE be a holomophic vector V-bundle over X. Then there are conju-
gate linear isomorphisms

H"(X,E®QP) ~ H" " (X, E* ® Q"?),

where n denotes the complex dimension of X. In particular, h?9(X) = h» P~ 9(X).

In the case that the orbifold X is Kahler much more can be said. The Kahler condition
is a local condition on curvature, and all the standard results hold equally well for orbifolds.
In particular, the operators in 2.1 satisfy A = 200. Recall also that the space A(X) =
@®A" (X) carries a representation of the Lie algebra s[(2,C) in terms of the operators L, A
and B = Zizo(n — p)IIP, where L denotes wedging with the Kahler form, A denotes the
L?-dual of L, and II? denotes projector onto A?(X). When X is Kéhler these operators
commute with the Laplacian A (and hence with (), and there is an induced representation
on the subspace of harmonic forms. Letting H{(X) and H5?(X) denote the space of
primitive r and (p, q)-forms, that is the kernel of A on H"(X) and HP?(X), respectively,
we have

LEFSCHETZ DECOMPOSITION THEOREM: Let X be a compact complex orbifold of complex
dimension n with a compatible Kahler metric. Then the following direct sum decomposi-
tions hold:
H(X)= ), LHy*(X),
s>(r—n)t
HPUX)= Y LR
s>(p+g—n)*t

In particular, be,.(X) > ba(X) > 1. Moreover, for p < n the map
L™"?: H?(X,C)—H*"?(X,C)

is an isomorphism.
We also have the well-known:

HobpGeE DECOMPOSITION THEOREM: Let X be a compact complex orbifold with a compat-
ible Kéhler metric. Then HP%(X) = H%P(X), and the following direct sum decompositions
hold:

H™(X,C)~ Y  HM(X,0),

pt+q=r
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H(X,C)~ > HPI(X,O).

ptg=r

In particular, b.(X) =" h?? and hP1(X) = h?P(X).

ptq=r

The last statement in the Lefschetz decomposition theorem implies Poincaré duality.
The proofs of all of the above theorems follow word for word from the usual proofs (cf.
[43]) by using Baily’s generalization of harmonic theory to the compact orbifold category.
Another important result of Baily [3] is:

KODAIRA-BAILY VANISHING THEOREM: Let X be a compact complex orbifold, K the
canonical V-line bundle and L any holomorphic V-line bundle on X. If L ® K~ is a
positive V-line bundle then

HY(X,0(L)) = 0 forg>1.

We are now ready to apply the above results to the situation at hand, namely the
twistor space Z of a 3-Sasakian manifold. Our first result depends only on the fact that
Z is a Kahler orbifold with positive definite Ricci curvature. It is a special case of the
Kodaira-Baily vanishing theorem.

COROLLARY 2.2: On the twistor space of a compact 3-Sasakian manifold we have h%° =1,
and h?°(Z) = h%P(Z) = 0, so there are no holomorphic p-forms on Z for 0 < p < 2n+ 1.
In particular, the holomorphic Euler number x(Z,0) = 1.

Next we relate the Betti numbers of Z to those of S. First we remark that if we

define the primitive Betti numbers by b = dimc#{(X), then the Lefschetz decomposition
theorem implies the equality

2.3 b(2) =b,.(2) — br—2(2)
for 0 <r < 2n+ 1 with b; =0 for i < 0. The following theorem was proven in [15] for the
case that § is regular by a Gysin sequence argument. Here we give a different proof using

harmonic theory which is valid in the general case.

THEOREM 2.4: Let S be a compact 3-Sasakian manifold of dimension 4n + 3 and let Z be
its twistor space, then for 0 < r < 2n 4+ 1 we have

br(S) = br(Z) — by_a(2).

This is an immediate consequence of 2.3 and

LEMMA 2.5: For 0 <r < 2n+1 an r-form on § is harmonic if and only if it is the lift of
a primitive harmonic form on Z.



PROOF: A theorem of Tachibana [40] says that any harmonic form « on S is horizontal,
i.e., £'{a = 0. But then since ¢! is a Killing vector field, we also have &'|da = 0. Thus,
« is also projectible. So if 0 # « € H"(S) we let 8 be the unique closed form on Z such
that o = 7*3. Now the metrics of § and Z are related by

2.6 gs =gz + (n')?

and this implies the following relations between the Hodge star operators:
2.7 *50427]1/\71'* *Z ,6

This relation holds for any basic horizontal form «. We claim that the form (3 is a primitive
harmonic form on Z. We have

2.8 dxsa=dnp' Am* xz B —n' Ad(m* xz ).

Now the second term on the right is in the ideal of AS generated by n' and the first term
is not. So if & € H"(S) the two terms on the right must vanish separately. The vanishing
of the second term implies that 3 is co-closed. Recall that dn' = 7*w, the pullback of
the Kahler form on Z. So the vanishing of the first term implies that 3 is in the kernel of
Lxz, but this is the same as the kernel of A, implying that 3 is primitive. Conversely, if
[ is harmonic and primitive on Z, then 2.8 shows that « is harmonic on S. Moreover, o
vanishes identically only if # does. |

REMARK 2.9: Tt is seen easily from the proof that Theorem 2.4 holds under the more
general situation where § is a compact Sasakian manifold and the base orbifold Z is
Kahler.

We now have an immediate corollary of Theorem 2.4 and Theorem A of [15]:

COROLLARY 2.10: The twistor space Z of a compact 3-Sasakian manifold S has vanishing
odd Betti numbers, and for 1 < r < n the even Betti numbers satisfy

k=1

In the next section we shall see that the more refined result of Kobayashi generalizes
to show that not only b;(Z) = 0, but that Z is, in fact, simply connected. Another
corollary of our results is:

COROLLARY 2.11: The Euler number x(Z) satisfies
X(2) =242 ba(2) > 2+ 2nba(2) > 2(n + 1).
k=1
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We remark that x(Z) denotes the usual Euler number of Z and not the “orbifold
Euler number” found in the literature [38,41]. Finally, let us note that it seems quite
likely that the more general Akizuki-Nagano vanishing theorem will hold on Z and allow
a generalization of Salamon’s proof [36] that all the cohomology of Z is type (p, p), but we
have not checked the details of this argument. However, it is clear from our results above
that all the cohomology in dimension two is of type (1,1).

§3. The Twistor space as a Projective Algebraic Variety

In this section we describe the twistor space Z in terms of projective algebraic va-
rieties. At the heart of the proof of this fact is Baily’s generalization [3] of the Kodaira
embedding theorem to the orbifold (or V-manifold) category:

KoODAIRA-BAILY EMBEDDING THEOREM: Let X be a compact complex orbifold and
suppose that X has a positive V-line bundle. Then X is an algebraic variety.

Once it is known that the twistor space is a projective algebraic variety, algebraic
geometric techniques can be brought to bare on the study of 3-Sasakian geometry. In
this regard we make free use of Serre’s GAGA to pass between the complex analytic and
algebraic pictures. We are now ready for:

THEOREM 3.1: Let Z denote the twistor space associated to a compact 3-Sasakian mani-
fold. Then Z is a simply connected normal projective algebraic variety. Hence, the singular
locus of Z has complex codimension at least two.

PROOF: Since Z has a Kahler-Einstein metric of positive scalar curvature, K ~! is positive.
Since Z is compact, the Kodaira-Baily embedding theorem (with L trivial) implies that
Z is a projective algebraic variety.

To prove normality we consider the local ring structure for compact complex orbifolds.
Let {U,T', ¢} be a local uniformizing system. Let Oz or just O denote the structure sheaf
of Z considered as a complex space. For z € Z the stalk O, of O is isomorphic to the ring
(9(1;5 , of I' ,-invariant germs of locally convergent power series in n complex variables, where
n is the complex dimension of Z. Since the local uniformizing groups are the identity on
the dense set of regular points, the ring O, is isomorphic to the ring Oc¢r of convergent
power series in C* when z € Z is regular. In particular, Oc» is a UFD. However, at a
singular point z € Z, the ring O, is isomorphic to the ring (’)g;i, which for I', # id is not
a UFD. Thus, the complex space (£, Oz) is not locally factorial. Nevertheless, since I, is
finite, the local rings (’)Eﬁ are integrally closed [11, pg 323] so (£, 0z) is normal; hence,
by a standard result the singular locus of Z has complex codimension at least two.

The proof of simple connectivity is essentially a translation of Kobayashi’s proof [25]
in the case of manifolds to the case of compact complex orbifolds. By positivity of the
Ricci tensor Z has at most a finite cover. By Corollary 2.2 the holomorphic Euler number
X(Z2,0z) = 1, and this must also hold on any finite cover. But from the above Z is
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projective algebraic, hence complete. So the version of the Hirzebruch-Riemann-Roch
Theorem for singular algebraic varieties due to Baum, Fulton, and Macpherson [13,pg
354] applies and we have

3.2 1=x(2,0z) =< Td(2), 2] >,

where Td(%’) is the Todd class. Moreover, 3.2 holds on any k-fold cover Z as well, and
< Td(2),[Z] >=k < Td(Z2),[Z] > . This forces k = 1. 1

We caution the reader that the simple connectivity of Z, that is m1(2Z) = 0 should
not be confused with “orbifold simple connectivity” introduced by Thurston [41] who
proves the existence of a “universal covering orbifold” X for any orbifold X, which is
generally not a covering space in the usual sense. He then defines the orbifold fundamental
group w¢"°(X) as the group of deck transformations of X. So we may have 7{"°(Z) non-
vanishing. A simple example of this is the twistor space K\P?"*1 where K C SO(3) is
a finite subgroup. This is simply connected by the Theorem above, but 7{"*(Z) = K.
Further examples are given in section 5.

PropPOSITION 3.3: Let S be a complete 3-Sasakian manifold and Z its twistor space.
Then, w{"*(Z) is finite. Moreover, if S is simply connected n{"™®(Z) = 0.

PrROOF: This follows from the homotopy exact sequence
71 (8H)—71(8) — 7™ (2)—{e}
established by Haefliger and Salem [17]. [

Suppose we are given a holomorphic line V-bundle on a compact complex orbifold X.
This is not necessarily a line bundle (or invertible sheaf) in the sense of complex manifolds
or algebraic geometry. It is, however, a reflexive sheaf of rank 1. A holomorphic line bundle
L on X is what Baily calls an absolute line bundle. The local transition functions for £
are everywhere I'-invariant. More generally the same distinction holds for holomorphic
vector bundles.

Similarly, we can define [3] a Baily divisor on X to be a I'-equivariant divisor. On
each local uniformizing system {U,T', ¢} we consider a divisor Dy on U. Since U is an

open subset of C", Dy corresponds to an invertible sheaf D on U. We let D, denote the
stalk of D at x € X. Then

DEFINITION 3.4: A Baily divisor on Z is a divisor Dy on each local uniformizing system
{U,T, ¢} that satisfies the two conditions

i) If for each x € X and vy €T, f € D., then fo~ € D,.
v
(i) IEX:{U, L, }—{U',I", ¢’} is an injection and f € D), then f o) € Dy.
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A Baily divisor is called absolute if on each local uniformizing system {U,T', ¢} the divisor
D can be written as D = (f), where f is the quotient of I'-invariant holomorphic functions
on U.

Absolute Baily divisors on Z are nothing but Cartier divisors. Analogous to the usual
case, for every Baily divisor D there corresponds [3] a complex line V-bundle [D]. If D is
absolute so is [D]. Since Z is a normal projective variety, Weil divisors also exist on Z;
however, since Oz is not necessarily locally factorial, Weil divisors are not always Cartier
divisors.

ProprosiTION 3.5: On Z Weil divisors and Baily divisors coincide.

ProOF: Let D be a Weil divisor on Z. Then its restriction Dy to U is a Weil divisor on U.
Its inverse image ¢~ (D) is a divisor on U. Moreover, the I' invariance of ¢ implies that
condition (i) of Definition 3.4 is satisfied. Similarly, one easily checks that condition (ii)
of 3.4 is satisfied. Conversely, let D be a Baily divisor which we assume to be irreducible.
Then, the invariance condition (i) guarantees that the image of D under ¢ cuts out a
closed subscheme of (Z,0z) of codimension one. Moreover, this subscheme is integral
since D is irreducible. ]

Varieties whose local rings are essentially I'-invariant subrings of the ring of convergent
power series in C", where I is a finite group have recently played an increasingly important
role in algebraic geometry. Mumford [34] used Matsusaka’s [31] theory of Q-varieties to
study the geometry of the moduli space of curves. More recently, the related notion of

a Q-factorial variety has become important in Mori’s Program on the Minimal Model
Problem (cf. [26]).

DEFINITION 3.6: A normal projective algebraic variety V is called a Q-factorial variety
if for every Weil divisor D on V, there is a positive integer q such that qD is a Cartier
divisor. The smallest such integer is called the index of the divisor D, denoted by Ind (D).
If in addition the anticanonical divisor —K is ample, we call V' a Q-factorial Fano variety.

We remark that although the term Q-Fano is ubiquitous in the Mori theory literature,
it appears to have many apparently inequivalent definitions. The one closest to our needs
is that given by Miyaoka and Mori [33]: a normal projective variety Y is a Q-Fano variety
if i*Kg’g is an ample invertible sheaf for some negative integer r, where K denotes the
canonical sheaf, and i : Y°—Y is the natural inclusion of the smooth locus of Y. Clearly,
a Q-factorial Fano variety is Q-Fano, but the converse is not necessarily true. Recall [33]
an n dimensional variety X is uniruled if there are an n — 1 dimensional variety W and a
dominant rational map f : P! x W—X. We have

THEOREM 3.7: The twistor space Z of a 3-Sasakian manifold S is a simply connected Q-
factorial Fano variety. In particular, Z is uniruled and the Kodaira dimension k(Z) = —oc.

PROOF: Since Z has a Kihler-Einstein metric of positive scalar curvature, K—! is ample.
By Proposition 3.5 Weil divisors are Baily divisors. So if D is a Weil divisor, on each local
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uniformizing system {U,T", ¢} we have D = (fr). Now fy is not necessarily I'-invariant;
however, the product ff; defined by 1.7b is invariant. Then condition (ii) of 3.4 implies
that ( fé)% = moD, where m = |T'|. Hence, moD is a Cartier divisor. It is known [33]
that Q-Fano varieties are uniruled. That k(Z) = —oo follows directly from uniruledness.
|

An explicit ruling of Z by a real family of rational curves can be given by realizing Z
as a V-bundle over a quaternionic Kahler orbifold M. Along the singular locus of Z the
fibers are possibly singular rational curves of the form K\P!, where K is a finite subgroup
of SO(3) or SU(2) that preserves both the complex and metric structures on P'. We have

PROPOSITION 3.8: Z is ruled by a real family of rational curves C' with possible singular-
ities on the singular locus of Z. All the curves C are simply connected, but w{"°(C) = K
with K as above, and all the isotropy groups are cyclic.

PROOF: This is well known off the singular locus in which case all the curves are P!’s. On
the singular locus the fibers are compact complex orbifolds of the form K\P!. Moreover,
the generalization of Kobayashi’s argument used in the proof of 3.1 shows that K\P! is
simply connected. The remainder follows from Thurston [41]. |

An important invariant of any algebraic variety is the Picard group Pic (Z). This
is the usual Picard group, not Pic°®(Z) defined in section 1. In fact since ordinary line
bundles are identified with absolute line V-bundles, Pic (£Z) is a subgroup of Pic’"*(Z). By
applying the Kodaira-Baily vanishing theorem to the long exact cohomology sequence of
the exponential sequence we easily see that Pic (£) ~ H?(Z,Z). Furthermore, since Z is
simply connected, Pic (Z) ~ H?(Z,7) is torsionfree by universal coefficients. Collecting
our results we have

PRrRoOPOSITION 3.9: Let Z be the twistor space of a compact 3-Sasakian manifold, and let
k = ba(Z) the second Betti number of Z. Then

(i) Pic (Z) is a subgroup of Pic°™®(Z).
(ii) Pic (2) ~ H*(Z,7) ~ Z* with k > 0.
(iii) Pic’™®(2) ® Q ~ Pic (2) ® Q ~ Q.

In the smooth case there are very strong constraints [29,30] on b2 (Z), namely, b2 (Z) <
2, and equals 2 in only one case, that of the complex flag manifold Fy 5 ,,+1. Furthermore,
there are only a finite number of inequivalent twistor spaces. This translates into similar
results for both quaternionic Kahler manifolds [29] and regular 3-Sasakian manifolds [15].
An important open problem is to understand what happens in the singular case, or corre-
spondingly in the general 3-Sasakian case. In section 5 we describe an infinite number of
inequivalent twistor spaces with by(Z2) = 2 and 7¢"%(Z) = 0. We mention that the larger
group Pic®"?(Z) should fit into the general orbifold cohomology of Haefliger [16].
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§4. The Complex Contact Structure

Next we discuss the complex contact structure on the twistor space Z of a 3-Sasakian
manifold S. This was first observed in the case of a regular foliation by Ishihara and
Konishi [21], and for the related twistor space of a quaternionic Kéhler manifold by Ward
[42] in dimension 4 and by Salamon [36] in the general case. Since then it has been used
extensively [28,29,30,35] in the study of quaternionic Kéhler manifolds.

Fixing a Sasakian structure, say (®!,£1) in the 3-Sasakian structure, we notice that
subbundle H = ker n' of TS together with I = —®!|H define a CR structure on S.
Furthermore, one easily sees that this CR structure is strictly pseudoconvex with vanish-
ing Webster torsion. Since ¢! is an infinitesimal automorphism of the CR structure, the
orbifold Z obtained as the quotient of S by the circle action generated by &' inherits a
complex structure Z from the CR-structure 7. This complex structure coincides with the
complex structure constructed from the quaternionic Kéahler orbifold O ~ §/Sp(1). Actu-
ally a 3-Sasakian structure gives a special kind of CR structure, namely, a CR structure
with a compatible holomorphic contact structure. Notice that the complex valued one
form on S defined by n™ = 52 +in3 is type (1,0) on S. Moreover, one checks that 5™ is
holomorphic with respect to the CR structure I. Although the 1-form 5™ is not invariant
under the circle action generated by &1, the trivial complex line bundle L+ generated by nt
is invariant. Thus, the complex line bundle L™ pushes down to a nontrivial complex V-line
bundle £ on Z. Let V denote the one dimensional complex vector space generated by L.
Writing the circle action as exp (i¢&1) shows that V is the representation with character
e~2¢_ and since S is a principal S' V-bundle over Z, the twisted product £ ~ S xg1 V is
a complex line V-bundle on Z. Now we can define a map of V-bundles 6 : T(:)Z2— 2
by

4.1 6(X) =n"(X),

where X is the horizontal lift of the vector field X on Z. Notice that #(X) is not a function
on Z but a section of £. Now a straightforward computation shows that T A (dp™*)" is a
nowhere vanishing section of A(??+1:9%{ on S, and thus 6 A (df)™ is a nowhere vanishing
section of K ® L1, where K is the canonical V-line bundle [3] on Z. Hence, in Pic®™®(2)

we have £ = K~ w1, (Here we are using the multiplicative tensor notation when thinking
of K as a V-line bundle). Alternatively, the subbundle ker 6 is a holomorphic subbundle
of T(19 Z which is maximally non-integrable. This defines the complex contact structure
on Z.

For a 3-Sasakian manifold S let Auto(S) denote the connected component of the
subgroup of the group of isometries of S that preserve the 3-Sasakian structure (S, gs, &?).
Then since Auto(S) commutes with £ one easily proves

PROPOSITION 4.2: Let S be a compact simply connected 3-Sasakian manifold and let Z
be its twistor space. Suppose that T" is a discrete subgroup of Auto(S) that acts freely on
S. Then S/T is a compact 3-Sasakian manifold with fundamental group T'; and Z/T is its
twistor space with n§"®(Z/T') = T'/Ty, where I'y is the normal subgroup of T that acts as
the identity on Z.
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It is clear from this Proposition that I' does not necessarily act effectively on Z. So it
is possible that two different 3-Sasakian manifold have the same twistor space. The only
known case when this happens is for Z = P?"*1 and S is §47*3 or RP2”*!. We shall show
below that this is the only case.

PROPOSITION 4.3: Let Z be the twistor space of a 3-Sasakian manifold of dimension 4n—+3.
If the contact line V-bundle L or equivalently its dual L~ has a root in Pic"rb(Z), then
it must be a square root. Moreover, in this case we must have Z = P?*+1,

Proor: By Proposition 3.8 Z is ruled by rational curves C which on the singular locus
take the form K\P!'. Now the restriction £7!|C is O(—2) which is a V-bundle if C is
singular. In either case it has only a square root namely the tautological V-bundle O(—1).
Since these curves C' cover Z this proves the first statement.

The second statement follows from a modification of an argument due to Kobayashi
and Ochiai [24] and used by Salamon [36]. The main point is that we can apply Kawasaki’s

Riemann-Roch [22] theorem to arbitrary powers of the line V-bundle £2:
)-S5 [ serwwich

where as usual {U,T, ¢ : U—)f]} is a local uniformizing system, fz is a partition of unity,
U7 is the fixed point set of v € ' in U, and Td” (X, E) denotes the equivariant Todd class
of the holomorphic V-bundle E. Now as in the usual case the equivariant Todd class [1],
and hence, the right hand side of 4.4 is a polynomial in 7 of degree < 2n + 1, and the left
hand side is the arithmetic genus = Y_,(—1)*A*(£2). Using the Kodaira- Bally vanishing
theorem the argument in [24] goes through as before to show that h°(£) = (n+1)(2n+3).
Now given the complex contact form 6 there is a well known isomorphism between the Lie
algebra ¢ of infinitesimal complex contact transformations and the holomorphic sections
of £ given by X +— 6(X). A slight modification of Salamon’s argument [36] will give the
result. First, by compactness the Lie algebra ¢ integrates to a complex Lie group action on
Z; second, Matsushima reductiveness theorem holds for positive Kahler-Einstein orbifolds
[12], so there is a compact isometry group G on Z of dimension (n + 1)(2n + 3). Thus,
the linear isotropy group Gy has dimension greater than or equal to (n + 1)(2n + 3) —
2(2n + 1) = 2n? + n + 1. Passing to the quaternionic Kahler orbifold shows as in [36]
that Go = Sp(n) x U(1). It follows by dimension counting that the isometry group G acts
locally transitively on Z. But since Z is simply connected G acts transitively on Z and
from Boothby’s list [10] we see that G = Sp(n + 1) and Z = P?n+1, i

wlﬁ

4.4 x(Z,

This Proposition allows us to give an extension of the Marchiafava-Romani class to
orbifolds. We assign to each twistor space Z an element ¢(Z) € Z/2 by defining ¢(Z) = 0
if £ has a square root in Pico’"b(Z) and ¢(Z) = 1 otherwise. Of course, Proposition 4.3 says
that ¢ = 1 unless Z = P?"*1, We now wish to formulate a converse to the construction in
the beginning of the section.

DEFINITION 4.5: A complete Q-factorial Fano contact variety Z is said to be good if the
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total space of the principal circle bundle S associated with the contact V-line bundle L is
a smooth compact manifold.

Thus, for good Q-factorial Fano contact varieties, S desingularizes Z. Notice also that
in this case S is necessarily compact. We now are ready for:

THEOREM 4.6: A good Q-factorial Fano contact variety Z is the twistor space associated
to a compact 3-Sasakian manifold if and only if it admits a compatible Kahler-Einstein
metric h.

Proor: Let Z be a good Q-factorial Fano contact variety with a compatible Kahler-
Einstein metric h. Choose the scale of h so that the scalar curvature is 8(2n + 1)(n + 1).
Let w : § — Z denote the principal orbifold circle bundle associated to L. It is a smooth
compact submanifold embedded in the dual of the contact V-line bundle £~!. The Kihler-
Einstein metric h has Ricci form p = 4(n + 1)w, where w is the Kéhler form on Z, and p
represents the first Chern class of K—1. Now K~ has £ as an (n + 1)-st root in Pic”?(Z).
Let n! be the connection in 7 : S — Z with curvature form 27*w. Then 2.6 can be used to
define the Riemannian metric gs on S. It is standard (see the proof in Example 1 of section
4.2 in [5]) that gs is Sasakian-Einstein. By Proposition 2.2.4 of [39] the bundle L& A0 Z
has a section # such that the Kahler-Einstein metric gz decomposes as gz = |0\2 + hp,
where hp is a metric in the V-bundle D. Let us write 7*0 = ™. Since S is a circle bundle
in £71, the contact bundle £ trivializes when pulled back to S. This together with the
condition that § A (df)™ is nowhere vanishing on Z implies that ™ is a nowhere vanishing
complex valued 1-form on §. So the metric gs on & can be written as

4.7 9s ="+ n"? +7*hp.

We claim that this metric is 3-Sasakian. To see this consider the total space M of the
dual of the contact V-line bundle minus its 0 section which is S x RT. Put the cone
metric dr? + r2¢g on M. The natural C* action on M induces homotheties of this metric.
Now using a standard Weitzenbock argument, LeBrun [28] shows that M has a parallel
holomorphic symplectic structure and his argument works just as well in our case. Let ¢
denote the pullback of the contact form 6 to M which is a holomorphic 1-form on M that
is homogeneous of degree 1 with respect to the C* action. Thus T = d¥ is a holomorphic
symplectic form on M which is parallel with respect to the Levi-Civita connection of
the cone metric. Hence, (M, dr? + r2g) is hyperkihler. Furthermore, if {I%}3_, denote
hyperkihler endomorphisms on M, 92,92 are the real and imaginary parts of 9, and 9! is
the pullback of n' to M, then LeBrun shows that

I =917 = 9°1°,
It then follows from our previous work [6] that g is 3-Sasakian. But by construction Z is

the space of leaves of the foliation generated by &', so Z must be the twistor space of the
compact 3-Sasakian manifold S. ]

Henceforth, by a twistor space we shall mean a Q-factorial Fano contact variety with
a Kéhler-Einstein metric of scalar curvature 8(2n + 1)(n + 1). Our previous results imme-

diately give
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COROLLARY 4.8: If e(Z) = 1 there is a one-to-one correspondence between compact 3-
Sasakian manifolds S and their twistor spaces Z, whereas if e(Z) = 0 then Z = P>"*1 and
there are precisely two 3-Sasakian manifolds with this twistor space, S*"+3 and RP*"+3,

We now have the following generalization of LeBrun’s Theorem:

COROLLARY 4.9: Let Z be a good Q-factorial Fano contact variety. Then Z is the twistor
space of a good quaternionic Kahler orbifold of positive scalar curvature if and only if it
admits a Kahler-FEinstein metric.

Another consequence of our result is:

PROPOSITION 4.10: Let Z be the twistor space of a 3-Sasakian manifold S and suppose
that €(Z) = 1. Then if 7{"®(Z) = 0 the 3-Sasakian manifold S is simply connected.

PROOF: Suppose that S is not simply connected, then there exist a simply connected
3-Sasakian manifold & covering S nontrivially. Let Z be the twistor space of S. Then
there is a commutative diagram

—

F\Q%l\)x

Ghe——U

—

By Proposition 3.3 7¢"%(Z) = 0 and by hypothesis 7¢"?(Z2) = 0. But then it follows from
Thurston’s uniqueness of universal orbifold covers [41] that Z ~ Z. But this contradicts
Corollary 4.8. 1

We end this section with a brief description of a contact reduction procedure due
to Hitchin [18] which when combined with Kirwan’s geometric invariant theory [23,32]
allows one to compute the rational cohomology of Z. When applied to the twistor space
of a 3-Sasakian manifold, this complex contact reduction technique fits together in the
expected way with both 3-Sasakian [7] and quaternionic Kahler reduction [14]. Given a
compact 3-Sasakian manifold S, let K C Auty(S) be a fixed subgroup of the group of 3-
Sasakian isometries. We assume that K acts freely on the zero level set of the 3-Sasakian
moment map, in which case the 3-Sasakian reduction S/ K is a compact manifold. The
complexification K€ of K acts on the twistor space Z of S as biholomorphic transfor-
mations preserving the complex contact structure . One can then define a holomorphic
K-equivariant moment map p : Z—¥¢* ® L by < p, X >= 6(X), where X € ¢ the
Lie algebra of K. This moment map is essentially the push forward of the component
ps = p% —ips of the 3-Sasakian moment map ps defined in [7]. Let Z C Z denote the
zero set of . Now K acts on Z and there is an ordinary symplectic (Kéhler) moment
map 1 : Z—€*, which is the push forward of u} of [7]. The reduced space uj'(0)/K is
a compact Kahler-Einstein orbifold. In the case that Z is smooth there is a well known
theorem of Kirwan which states that there is a homeomorphism Z**/K® ~ u;7'(0)/K,
where Z°° denotes the subset of semistable points of Z. This then is identified with the
reduced twistor space Z = Z /K of the reduced 3-Sasakian manifold S//K. Then using
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rational equivariant cohomology theory Kirwan [23] proves that there is an isomorphism
of Abelian groups

4.11 Hy(Z,Q) = H*(Z,Q) ® H*(BK, Q),

where BK is the classifying space of K and Hj denotes equivariant cohomology. Fur-
thermore, there is a surjective map Hy (Z,Q)—Hy (Z°%,Q) ~ H*(Z,Q), so one can use
this procedure to determine the rational cohomology of Z [23,32].

§5. The Weighted Flag Varieties Z(p)

We recall how the manifolds S(p) can be obtained by 3-Sasakian reduction [7].
All known examples of 3-Sasakian manifolds are either homogeneous or obtained by 3-
Sasakian reduction from the sphere S*"~1 or are finite quotients of such [6,7]. Let
u = (u1,...,u,) € H", be the quaternionic coordinate on the n-dimensional quater-
nionic vector space, equipped with the flat metric. We consider the unit sphere in
H* > S 1(1) ={ue H" | Y "_ Uyus = 1}, with its standard 3-Sasakian structure
from the right. The subgroup of the connected isometry group Isom(S%"~1) = SO(4n)
which preserves this 3-Sasakian structure is Sp(n) - Sp(1). If we represent the quaternionic
coordinates u as a column vector, the action of this group on the S**~! is the Z/2 central
quotient of the action ((A,o);u) — Auo, where A € Sp(n) is a quaternionic n X n
matrix of the defining representation of Sp(n), and ¢ € Sp(1) is a unit quaternion. Fixing
a direction o € Sp(1) fixes a CR structure on S*"~1 and hence, a complex structure on
the corresponding twistor space P2"~!. The subgroup of Sp(n)-Sp(1) which stabilizes this
direction is Autg(S*"~1) = Sp(n). Choosing any closed subgroup K C Sp(n) then gives
rise to a 3-Sasakian moment map p : S~ —¢* ® R3, where £* denotes the dual of the
Lie algebra ¢ of K. If K is a general circle subgroup of the maximal torus 7™ in Sp(n),
then the action is determined by a weight vector p = (p1, ..., pn) € Z™. Explicitly, we have
Op : ST x S~ — G4n—1 where

5.1 Op(T,u) = (TP uq, ..., 7P uy,).

The circle action (5.1) gives the 3-Sasakian moment map pu(p) : S 1 —R® as

n
2 (p)(z,w) = > pi(lz° = [w; ),
5.2 J?
po(p)(z,w) = ijwjzj, where p~ = p? — i3,

j=1

where we identify H* ~ C" x C* > (z,W) by u = z+ jw. The zero level set of the moment
map u(p) defined by N(p) = u(p) *(0) is a real codimension 3 compact submanifold in
S4n=1 diffeomorphic to the Stiefel manifold U(n)/U(n — 2) = N(1) of complex 2-frames

in C*. If all the weights are non-zero and pairwise relatively prime then the quotient of
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N(p) by the circle action (5.2) is a manifold S(p). The geometry and topology of these
spaces were discussed in [7]. We mention that the Weyl group W ~ ¥, x1(Z/2)™ of Sp(n)
acts on the weight space, so if w € W then S(wp) ~ S(p) as 3-Sasakian manifolds. Here
we want to describe the twistor space Z(p) associated to S(p).

The twistor space can be viewed as the leaf space of a T?-torus action A(p) on the
Stiefel manifold N(p) given by

53 21 e Zn (7-_,p2 Tplzlp e Tpnznp

: w1 e W, TP1 wlﬁ e Tpnwnﬁ ’
where (7, p) = (€27, e27%) t s € [0,1) are the complex coordinates on a 2-torus. There
is a real structure on the twistor space Z(p) obtained from left multiplication by the

second quaternionic unit j on the quaternionic vector u € H" or in terms of the complex
coordinates

5.4 J(z,w) = (—w,z).

Now J intertwines the equivalent actions A(p) and A(—p), so the order 4 map J on N(p)
passes to an involution J on the twistor space Z(p).

In [7] we wrote S(p), p € (Z™)™, as a certain biquotient of the unitary group U(n).
Similarly we can write Z(p) = U(1)p\U(n)/U(n —2) x U(1), where U(1)p C U(n)r, and
U(n—2)xU(l) C U(n)g. The action is given by the formula

D1

-
(1B,A) _ A O
W —- .. W((O) ]B)'

Tp‘n

Here W € U(n) and (7,B,A) e U(1) xU(n—2) x U(1), with A = (8 g) In particular

Z(1) is homogeneous and it is the complex flag manifold Fy 5 ,,. It is therefore natural to
refer to the general Z(p) as weighted flag varieties. In fact, they have the same rational
cohomology as F o ,,. Using Theorem 2.4 and Poincaré duality together with the fact that
the full integral cohomology of S(p) was calculated in [7] we have

THEOREM 5.5 : For each p € (Z*)™ such that ged(p;,p;) = 1 for i # j, we have isomor-
phisms of Abelian groups

H*(Z2(p); Q) = H*(Z2(1); Q) = H*(F1,2,1; Q).
In particular, bo(Z(p)) = 2 and Pic (Z(p)) = Z & Z. Moreover, n"*(Z(p)) = 0.
There is an alternative proof of Theorem 5.5 that avoids knowing the cohomology

of the 3-Sasakian manifold S(p). In fact this method together with 2.4 then gives the
rational cohomology of S(p) independently from the calculations in [7]. The method
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uses the complex contact reduction procedure together with Kirwan’s geometric invariant
theory [23,32] discussed at the end of section 4. The moment map 5.2 is now interpreted
as an object on the complex projective space P2"~! with homogeneous coordinates [z; :
e+ 2p iy e i Wy]. Now pl is a function on P?"~! whereas p~ is a holomorphic section
of the line bundle L~ (9(2) The zero set of u~ is _]USt the complex quadric Q C P?»~1,

and the subset Q*° of semi-stable points is @ — P! LU P~ L. So by Kirwan’s Theorem
Z(p) ~ Q%% /C*. Moreover, all quadrics are equivalent and it is easy to see from [23, pg
105] that the semi-stable points are independent of p. So the isomorphism of the rational
cohomology groups follows from the discussion at the end of section 4. The orbifold simple
connectivity of the weighted flag varieties Z(p) follows immediately from Proposition 3.3
and the fact [7] that the 3-Sasakian manifolds S(p) are simply connected. [

REMARK 5.6: The condition that the components of p be pairwise relatively prime in
Theorem 5.5 is in no way essential as can be seen from the second proof. If p € (Z1)"
is an arbitrary n-tuple of non-zero integers, the weighted flag varieties Z(p) are still well-
defined. Moreover, it is easy to see that Z(p) is independent of the common g.c.d. of
the n-tuple (p1,---,pn), so without loss of generality we set ged(p1,...,pn) = 1. In this
more general case S(p) is no longer a manifold, but an orbifold. Nevertheless, by applying
the homotopy exact sequence of [17] to the T? and S! actions on N(p) we get both

m"(Z(p)) = 7" (S(p)) = 0.

Using either the equivalence results of [8] or the singularity analysis in the next section,
it is not difficult to prove

THEOREM 5.7: Let p,p’ € (Z7)™ and let Z(p) and Z(p’) be twistor spaces. Then they
are equivalent as complex orbifolds if and only if p' = op for some o € %,,, where ¥,, is
the symmetric group on n-letters.

In [8] it was shown that N(p) has a natural hypercomplex structure, and the con-
nected component of the group of automorphisms of this complex structure was com-
puted. Moreover, this was used [9] to compute the connected component Auty(S(p))
of the group of 3-Sasakian automorphisms of the manifolds S(p). It was shown that
Auto(S(p)) = S(U(k) x U(1)"~*), where k is the number of 1’s in p, and S denotes
removing the central U(1) subgroup determined by the action 5.1. Using this it is not
difficult to prove:

THEOREM 5.8: Let Z(p) be the twistor space of the compact 3-Sasakian manifold S(p) of
dimension 4n—5. Then the connected component Ky(Z(p)) of the group of automorphisms

of Z(p) preserving both the complex contact and the Kahler structures is isomorphic to
Auto(S(p)) = S(U(k) x U(1)™*), where k is the number of 1’s in p.

We note that it is easy to generalize this result to those orbifolds discussed in Remark
5.6.

Simply connected 3-Sasakian manifolds admit a lot of discrete quotients. For the
3-Sasakian homogeneous spaces S = G/K classified in [7] all such quotients are of the
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form I'\S = I'\G/K, where I' C G is a discrete subgroup of the group of 3-Sasakian
isometries G = Auto(G/K). The twistor space of I'\G/K is I'\G/K - U(1), i.e., T'\Z,
where Z = G/K - U(1) is the twistor space of S. Clearly, the fundamental group of I'\S
is just ' and the orbifold fundamental group of I'\ Z is given by Proposition 4.2.

The spherical space forms T'\S*"~1 where I' C Sp(n), were considered already by
Sasaki [37]. However, we point out that its is not just the 3-Sasakian spheres that admit
such discrete quotients. Below we give an example of some discrete quotients of the 3-
Sasakian space S(1,1, k). Let ' be the cyclic subgroup of order m of Auto(S(p)) defined
by the action on the quaternionic coordinates by (u1,ua,u3) = (Cuq,us, Cu1), where  is
a primitive of Z/m. Now we restrict this action to N (1,1, k) and notice that the condition
to have fixed points on S(1,1, k) is

z1 23 23 (tz1 Tze (TFz3
59 = ~ k .

w; Wy W3 C(twy 71wy (TFws
From this it is not difficult to see that I' ~ Z/m acts on S(1,1, k) without fixed points
if m is chosen so that ged(m,k + 1) = 1. For such m we have 3-Sasakian manifolds

S(1,1,k)/T with m; = Z/m. It is straightforward to check that this I' action induces an
effective action of I' on Z(1,1, k). Thus, 7{"*(Z(1,1,k)/I') = Z/m when m is subject to
the above conditions. Note that when k£ = 1 the condition on m reduces to it being odd.
In this case we get examples of Z/m quotients of the homogeneous 3-Sasakian manifold
S(1,1,1) =~ U(3)/U(1) x U(1) by a cyclic subgroup T" of its isometry group SU(3). Many
further examples of quotients of S(p) can be easily worked out in a similar way.

§6. The Singular Locus of Z(p)

We now want to describe the singular locus 3(p) of the twistor space Z(p). As with
any group action there is a natural stratification of the twistor space Z(p) defined by the
toral action.

DEFINITION 6.1: We say that two points z,y € Z(p) are in the same stratum if their
isotropy groups (leaf holonomy groups) I'; and Iy are conjugate by the action A(p) of T?.

Of course, since T2 is Abelian this means that the isotropy groups actually coincide.

Furthermore, the smooth locus Zy(p) comprises the dense open subset of points of Z
whose isotropy subgroup is the identity. The equation for fixed points reads

21 e Zn Tplzlp . Tpnz'n,p
6.2 = _ .
w1 e W, Tplwlp . Tpnwnp
First we prove a general result about the set of points with non-trivial isotropy.

LEMMA 6.3 : Let p € (Z*)™ such that ged(p;,pj) = 1 for all i # j and suppose that
(z,w) € N(p) is on a singular T?-orbit. There are two cases:
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(i) If all the weights p; are odd, then for each i =1, ...,n either z; = 0 or w; = 0.

(ii) If one of the weights, say p1, is even, then either z1 = 0 or wy; = 0, and if (z1,w1) #
(0,0) then for each i = 2, ...,n either z; = 0 or w; = 0.

PROOF : We prove case (i) only, case (ii) is proven similarly. Suppose not. Then for some
1 # J we have
TPip =1Pip =1, TPip=71Pip=1

which yields p? = 1, and 777 = 7Pi. As ged(p;,p;) = 1 and both are odd odd we get
(r,p) = {(1,1),(—1,—1)} as the only solution. But this is exactly the Z/2 factor that acts
trivially on Z(p). |

For simplicity, let us consider the n = 3 case, that is Z(p1, p2, p3) is a complex 3-fold
with orbifold singularities. The general case can be treated similarly and we will discuss
it later. In view of Lemma 6.3 we consider two cases. In the first case all of p1, p2, and p3
are odd and (—1,—1) € T? fixes every point of N(p). We will factor out this Z/2 to pass
to an effective action of the quotient group. In the second case we take p; to be even.

Let us consider the case of all odd weights first. We introduce the following notation:
Let 4,5 = 1,2,3. We define

S o
6.4 p§=§(pz'+29j) i # 7,
and
6.5 &y = ged(pl,pl),  d* = ged(pi, pk).

As we will show later, the six integers p? = pl, p3 = pl p2 = p3, di; = d33, d2; = di3,

d3, = di? are the orders of the cyclic groups associated to the orbifold stratification of
Z(p1,p2,ps). We can write Z(p1,p2,p3) as

Z(p1,p2,p3) = Z0(p1,p2,P3) UX(P1,D2,P3),

where Zy(p1, p2, p3) denotes the regular part and ¥(pq,p2, p3) is the singular locus. The
singular strata of X(p1, p2, p3) can be described as follows: Let

=~ 0 0 D2 Y41
6.6 = (™ )‘ z1)? = , |we|? = ——— Y ~ T2
2 {(0 (I 21 p1+ D2 el p1+ D2

Then all the points on X2 have the same isotropy subgroup described by

6.7 Iy={(r,p) €T? 172 =1 p=r1P2}

which, after dividing by the non-effective Z/2, is isomorphic to the cyclic group Z/p3.
Similarly, let

= 0 2z O 2 D1 2 D2 2
6.8 Y2 = ‘ 29|° = , |un|f=—— ) = T7,
' {(wl 0 0) el = v +pz}
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with
6.9 I?P={(r,p)eT? ™t =1 p=r7"}

Note that although both groups are abstractly isomorphic to the cyclic group of order
p? = pi, they are not the same. As T? is Abelian, they cannot be conjugate in T2. We
define 33, 1 33 and ¥2 and the corresponding isotropy subgroups in a similar way.
Again, note that abstractly both F; and Fg are abstractly isomorphic to a cyclic group

of order pf = pf . But they are never conjugate unless they are trivial. All of the sets
described so far are single T2 orbits so they correspond to a ppint in the twistor space.
Notice that under the J-map defined by 5.4 we have J(X7) = Y. Next, consider

610 Ssz_J(xn = 0 ‘ (p1 +ps)l21|* + (P2 + ps)l2a|” = ps
) 3 0 0 w3 |w3\2:1—|z1\2—\22|2,215£0,227€0 )

Then all the points on 53:1,)2 are fixed by the isotropy group
6.11 Iy ={(r,p) €T?| 7P =7gP2¥P3 =1 p=qPs}

Similarly, we have

6.12 »3, = ( 0 0 Z3> ‘ (pr + p3) w1 + (P2 + p3)|wa|* = ps
12 wyp w2 0 |z3‘2:1—‘w1‘2_‘w2‘2’ ’w17é0, ’LU27£0 ’

on which every point has isotropy group
6.13 F‘%2 ={(r,p) € T2| TP1tPs — pP24Ps — p=T1P)

Again, note that both T'}? and I'3, are abstractly isomorphic to a cyclic group of order
di? = d3,, but they are not conjugat~e in T2.~ We define T, ¥F;, T7/, and ¥}/ for k = 1,2
in a similar fashion. Note that J (Efj) = Y. Also the vertices and the edges are put
together so that, for example,

6.14 NIH=SiusPus] ~ 8§83 x §?
is the Hopf surface with another copy of it obtained as the image of the J-map of 5.4.
Thus on N (p1, p2, p3) we have six copies of the Hopf surface S x S! intersecting at 2-tori

and paired by the J-map.

~ Lemma 6.3 shows that in this case there are no more singular orbits. If we define
¥ =%1/T?, Egk = Egk/TQ, and X%, = %%, /T? then, on Z(p) we can write

6.15 S(py,po,p3) =2TUSPuUuSiuS,usiuriPusius,usiuni?uriusg®
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Naturally, if any of the isotropy groups associated with %7 or ¥/¥ is trivial that set
will be a part of Zy(p1,p2, p3) rather than X(pq, pe, p3). Even with this in mind (6.15)
not always represents the orbifold stratification of Z(p1, pa, p3), where different strata are
defined to be unions of points with conjugate isotropy groups. However, it coincides with
such stratification unless p = (1,1, k), see Remark 6.17. Schematically, we can describe
the whole stratification by a hexagon:

Iy

23
1—‘1

I3 I3
% ry
I3 r}

I3
6.16. The singular set for pi, p2, p3 odd

One can think of this diagram in two ways. On one hand it is a representation of the
set of points with nontrivial isotropy subgroups in N(p1,p2,p3). On the other hand it is
also a representation of the singular locus X (p1, p2, p3) of the orbifold Z(pq, p2, p3). It is
understood here that, if any of the positive integers attached to the lines and vertices of
the hexagon are equal to one, than they should be removed as they would correspond to
the regular part.

REMARK 6.17 : Depending on the weights, we have six different types of stratifications:

) then the twistors space Z(p) is a manifold and it is the complex flag

(2) If p=(1,1,k), k£ > 1 and odd. In this case there are two isotropy groups, both cyclic
of order % The singular stratum (1,1, k) consists of two disjoint copies of S?
and its schematic picture can be obtained by removing from the above hexagon two
opposite vertices and four edges.

(3) If at least two of the weights are greater than 1, and d3® = d}® = di? = 1 then
Y(p1, p2, p3) consists of six isolated points as, for instance, in the case of Z(1,9,13)
or Z(1,5,9).

(4) If at least two of the weights are greater than 1 and one of the three integers
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{d?3,d}3, di?} is greater than 1, then Y (p1, p2, p3) consists of of six points, two pairs
of which are joined by an S? as in the case of Z(1,3,5).

(5) If two of the three integers {d33, d33, di?} are greater than 1, then X(p1, p2, p3) consists
of of six points joined by 2-spheres in a way that is given by the diagram 6.16 when
we remove two opposite edges. This is the case, for example, for Z(p) = 2(1,9,11).

(6) If all three of the integers {d33, di3,d}?} is greater than 1, then Y(py, p2,p3) consists
of of six points joined by the 2-spheres in a way shown by diagram (6.16), as, for
instance, in the case of Z(1,71,209).

When one of the weights is even, there is one more singular orbit. Let p; be even and
define

p; =i +pj) i#J,
with dgk, d;’“ as before. Now, there are always exactly two vertices with for which the
orbifold group has even order equal to py + p3. These two vertices are always connected

by a 2-sphere on which the isotropy group is just Z/2. The singular orbit on N(p1, p2, p3)
can be described as

6.18 3(Z/2) = {(Zl S ) € N(p1,p2,p3)| w1 =2 =0 (22, ws) z (3’8) }

w1 W2 W3 (253,11)2) (7 )

This set is mapped to itself by the J-map. Clearly, $(Z/2) together with the tori X3 U X3
is another Hopf surface and we obtain the following diagram

Iy

I3
6.19. The singular set for p; even

REMARK 6.20: In this case we always have at least 6 singular points, two of them neces-
sarily connected by a 2-sphere. The five types of the stratification described in Remark

26



5.23 all occur in the presence of this additional Z/2 singularity. Again, the p = (1,1, k),
k even is special. The orbifold Z(1,1,k) has three disjoint strata in (1,1, %), one of
them has isotropy group Z/2 and the other two Z/(k + 1) (but the two groups are not
conjugate).

In view of the Lemma 6.3 we can describe the general case in the same way by
introducing top dimensional “strata”. Take the m-element set {1,2,...,n} and divide it
into two non-empty subsets

6.21 {1,2,...,n}={oq,...,ox} U{B1, ... B} = a U .
We introduce the subset of N(p)

699 N(Fg):{(zl zn)eN(p)‘ wm:...:wﬁjzo}

w1 Wy, Za]_:"':'zak:()

which consist of points with the following isotropy subgroup
6.23 8 ={(r,p)€T? tPrp=--.=7Pip=qPap=...=7Pup=1}.

In the case when all the weights are odd we take T3 /Z,. In this way we get (2" — 2)
“singular sets” N (Fg) which correspond to different partitions of {1,...,n} into two non-
empty subsets. One can easily see that

6.24 N(IB) =~ §2BI7L 5 g2lel=1,

The isotropy group I'J may be trivial in which case almost all of the N(I'4) will be in the
non-singular stratum. They are paired by the J-map, which corresponds to interchanging
upper and lower multi-indices. The top-dimensional singular sets may intersect in a lower
dimensional one with the isotropy group of the new set containing the other two groups
as subgroups. In particular, let

6.25 {1,2,...n}=aUfB=vUd

be two different partitions and let NV (Fg), N (I‘g) be the corresponding singular sets. Then
on the intersection N(I'S ') = N (I'5) N N (I'Y) we get

6.26 (zi,'wi) = (0,0), 1€ K,

where K = (N ) U (BN +). Then this intersection is just the product S2(B=7D-1 x
52(2=0D=1 and the new isotropy group I’} «I') can be obtained from I' or I') by dropping
the relations on (7, p) which involve all p; with 7 € K:

627  TOxT={(r,p) €T? tPrip=rPoip=1, VB, €pB\vy, Va;€a\d}

Hence, we can write Fg * I‘i = I‘g ig and “x” is simply a “contraction” of indices. Note

that if any of the sets (a\ §) or (8 7) is empty then N(I'2) N N(I“;) = and I'? *I’fsy is
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not defined. For instance, N (I'5) N N(I'§) = @, which says that N (I'5) does not intersect
its image under J.

In the case when p; is even there is an extra Z/2-set which is just a the Stiefel
manifold N (pa,...,pn). On the twistor space each N (I‘g) /T? C ¥(p) is simply a singular
Kihler reduction of the complex projective space CP"~! by a circle action, which is
automatically a compact Kéhler orbifold of complex dimension n — 2 (but not Kéahler-
Einstein when n > 3). In the case of all weights being odd this is the largest possible
dimension of the singular stratum in Z(p) so that the orbifold singularities are at least
of complex codimension n — 1. When p; is even, we get N(p2,...,pn)/T? =~ Z(p2, ..., Pn),
which is of complex codimension 2 in Z(p) and is a compact Kahler-Einstein suborbifold.
It is a coincidence that when n = 3 the Z/2 set looks the same as all the other singular
sets of X(p).

Just as in the n = 3 case, the rules under which the top strata are put together can
be expressed in terms of a polytope in R"~!, similar to the hexagons of Fig. 6.16 and 6.20.
This polytope has 2™ — 2 faces. There are 2n faces which are (n — 1)-topes and the rest
are n-topes. These faces intersect in (2’) 2k —2),k=1,2,...,n — 2, strata of dimension
(n — k — 2), all of them polytopes in R®“*~1. Note that all lower dimensional sets must
come from the natural inclusions

6.28 Y(p1y ey Diy -y Pn) C 2(P), 1=1,2,...,n.

Thus one gets an inductive way of building the singular set ¥(p) for general n starting
with n = 3 and at each step considering only the top dimensional singular sets. The next
example illustrates this with n = 4.

6.29. The singular set of Z(p1,...,p4) for all p; odd

ExAMPLE 6.30 Let us describe the singular locus ¥ (p1, pa2, p3, p4) of Z(p1,p2, p3,pa). As-
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sume here that all the weights are odd. On N (p1, p2, p3, pa) we have 2% —2 = 14 faces. We
have six faces which are squares. They are N(I'33), N(I'23), and N(I'}3) (plus their im-
ages by the J-map). Then there are 8 faces which are triangles, that is N(I'323), N(I'234),
N(T33%), and N(I'3?*) (plus their images by the J-map). The faces intersect in 24 Hopf
surfaces S3 x S? (edges), and 12 tori S x St (vertices) according to the rules described
by 6.26-27. The whole stratum can be put together into a semi-regular polyhedron called
a cuboctahedron. In Figure 6.29 we have indicated the isotropy group associated to each
front face and the isotropy groups of all 12 vertices. The isotropy groups of the “opposite”
faces are obtained by switching upper and lower indices (the J-map) and all the edges
can be easily inscribed by either I/ k¥ or I‘; . using the “contraction” rules given in 5.33-34.
For instance the vertices of the AT'IT3T2 would read '234 x T35 = I'34, 234« T2 = T2,
234« T2 = I'?%. Note that the hexagon X(p1,p2, p3) includes in X(py, pa,ps,ps) as a
“section” of the cuboctahedron with vertices TAT3I'3I'2I'2T'. The same holds for the 3
remaining hexagons and they build all the vertices and edges of the cuboctahedron.
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