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Betti Numbers of 3-Sasakian Manifolds
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Introduction

In 1960, Sasaki introduced a particular type of Riemannian manifold endowed with
an almost contact structure [48]. The importance of Sasakian manifolds was soon
recognized, and the special case of 3-Sasakian manifolds was first distinguished by
Kuo [35] and Udriste [55]. A 3-Sasakian manifold (S,g) is a (4n + 3)-dimensional
Riemannian manifold with three orthonormal Killing fields £!,£2, &% which define a
local SU(2)-action and satisfy a curvature condition. One says that S is regular if the
vector fields & are complete and the corresponding 3-dimensional foliation is regular,
so that the space of leaves is a smooth 4n-dimensional manifold M. Konishi and
Ishihara [30] noticed that the induced metric on the latter is quaternion-Kéahler with
positive scalar curvature.

A complete regular 3-Sasakian manifold S fits into a diagram of Riemannian sub-
mersions
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except that the fibre RP? has to be replaced by S* when S is the sphere. The manifold
Z is Kahler, and arises as the quotient of S by the circle group associated to any one
of the vector fields £%. All three Riemannian manifolds S, M, Z are Einstein with
positive scalar curvature. Conversely, starting with a quaternion-Kahler manifold M
of positive scalar curvature, the manifolds §& and Z can each be recovered as the total



spaces of bundles naturally associated to M. In particular, Z is the twistor space of
M, and its geometry was investigated in [45].

The above situation has been generalized to the orbifold category by Boyer, Galicki
and Mann [7]-[13]. Indeed, 3-Sasakian geometry provides a natural language in which
to describe results about quaternion-Kahler orbifolds, since there are situations in
which S is a manifold but M and Z are not. In particular, for any n > 1 and any
(n + 2)-tuple of pairwise relatively prime positive integers p = (pi,...,Pns2), there
exists a non-regular (4n + 3)-dimensional 3-Sasakian manifold S(p) whose leaf space
is a quaternion-Kahler orbifold studied in [21].

The above examples show that there are infinitely many homotopy types of 3-
Sasakian manifolds in every allowable dimension. Their existence motivated the present
paper whose purpose is to establish some new results about the topology of 3-Sasakian
manifolds.

THEOREM A. Let (S,g,&%) be a compact 3-Sasakian manifold of dimension 4n + 3.
Then the odd Betti numbers by, 1 of S are all zero for 0 < k < n.

This theorem is proved in Section 2 and follows from the fact that harmonic forms on
S are restricted to lie in very specific submodules of the exterior algebra. This type
of result is familiar for manifolds with reduced holonomy with which § is associated,
but its own holonomy group is significantly never a proper subgroup of SO(4n + 3).
Moreover, Theorem A holds without assuming that & is itself regular in the sense
defined above.

In the regular case it is easy to relate the Betti numbers of the three manifolds
S, Z, M, and we show in Section 3 that those of S coincide with the so-called primitive
or effective Betti numbers of both M and Z. Theorem A then provides an alternative,
and in some ways more elementary, proof of the fact that the odd Betti numbers of M
and Z all vanish [45]. On the other hand, the existence of a complex structure on Z
does lead to quick proofs of a number of non-trivial results, such as the fact that RP*"+3
is the only compact regular 3-Sasakian manifold which is not simply-connected. In a
similar vein, the following theorems are re-interpretations of further results of LeBrun
(36, 37].

THEOREM B. (i) Up to isometries, there are only finitely many compact regular 3-
Sasakian manifolds in each dimension 4n+ 3, n > 0.

(ii) The only compact regular 3-Sasakian manifolds for which by > 0 are the spaces

U(m)/(U(m — 2) x U(1)), m > 3.



Friedrich and Kath [18] showed that a 3-Sasakian metric on a 7-manifold (the case
n = 1) is characterized by the existence of at least three independent Killing spinors.
As explained by Bér [4], a Riemannian 7-manifold admits at least one Killing spinor if
and only if it has weak holonomy G, in the terminology of Gray [24]. To illustrate the
calculus of differential forms in Section 2, we identify a second Einstein metric with
weak holonomy G5 on a 3-Sasakian 7-manifold. The latter arises from a metric with
holonomy Spin(7) constructed in [15] on the spin bundle of the orbifold M.

The classification of 3-Sasakian homogeneous spaces was given in [7] and is ex-
plained briefly in Section 4. It is known that any compact regular 3-Sasakian (4n+ 3)-
manifold S is homogeneous if n < 2. The case n = 1 was proved in [18] and follows
from the classification of compact self-dual Einstein manifolds of positive scalar curva-
ture [27, 19, 5]. The case n = 2 was obtained in [7] and follows from the corresponding
result for positive quaternion-Kéhler 8-manifolds [42, 37]. Related to the latter is the
fact that the Betti numbers of a compact regular 3-Sasakian 11-manifold must satisfy
by = by. Furthermore

THEOREM C. Let & be a compact regular 3-Sasakian manifold of dimension 4n + 3.
(i) The Betti numbers of S satisfy > k(n+1—k)(n+ 1 — 2k)by, = 0.
k=1

(i) If by = 0 and n =3 or 4 then S is the sphere or real projective space.

The intriguing constraint in (i) is deduced from an analogous one for M, namely [37,
Theorem 0(iii)] that was proved by considering coupled Dirac operators. It may be that
equivariant index theory can be used to provide a more direct proof of Theorem C(i),
and to extend its validity to the non-regular case. It should, however, be noted that
Theorem B(ii) is known not to hold in general |7, 8]. A proof of Theorem C(ii) proceeds
in Section 5 by showing that the corresponding quaternion-Kahler manifold M must
be the projective space HP".
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1. Preliminaries

This section includes definitions of Sasakian structures and examines some of their
basic properties.



Let (S, g) be a Riemannian manifold and let V denote the Levi-Civita connection of
g. Given a vector field &, let  denote the 1-form dual to &, and ® the endomorphism of
the tangent bundle defined by ®(X) = V x&. The condition that ® be skew-symmetric
is precisely equivalent to saying that ¢ is a Killing vector field.

1.1 DEFINITION. (S8, g¢,£) is a Sasakian manifold if € is a Killing vector field of unit
length and

(Vx®)(Y) =n(Y)X —g(X,Y)E
for all vector fields X,Y .

Suppose that X is a vector field orthogonal to £. Since ¢ has length 1,
0=g(VxE, &) = —9(VeX, &) = g(X, Veb),
and it follows that ®(§) = 0. Using this, one obtains
9(2%Y, X) = —g(Vx§, @Y) = g(&, (VxD)Y),
and Definition 1.1 implies that
P?=-1+7®¢ (1)

This shows that & acts as an almost complex structure on the codimension 1 distri-
bution orthogonal to &, and it follows that S has dimension 2m + 1. If ¢ denotes the
2-form corresponding to ®, we have

P(X,Y) = g(®X,Y) = 3 (Vxn)Y — (Vyn)X) = dn(X,Y). (2)
It makes sense to consider the ‘Nijenhuis tensor’
Ne(X,Y) = [®X,®Y] + ®?[X, Y] — ®[X, dY] — ®[®X, Y]

associated to ®. The close relationship between Sasakian and complex structures
derives from the easily-proven formula

Ns(X,Y) = —2¢(X,Y)¢

which implies that if the infinitesimal automorphism £ arises from a free circle action
then the quotient S/U(1) is a complex manifold. The latter actually possesses a Kahler
metric. We next describe a more specialized situation that is the subject of this article.
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1.2 DEFINITION. A 3-Sasakian manifold is a Riemannian manifold (S, g) that admits
three distinct Sasakian structures whose vector fields €', €2, €3 are mutually orthogonal

3
and satisfy [£2,£°] =2 " e®¢¢ for a,b=1,2,3.
c=1

The equation in Definition 1.1 is not preserved by a homothety ¢ — tg with ¢ > 0
constant, and so the metric ¢ in Definition 1.2 cannot be re-scaled so as to remain
3-Sasakian. The Lie bracket equation may be rewritten

(I)aé-b — —Vgafb - _ Zeabcgc’ (3)

and the third Sasakian structure £* is determined up to sign by ! and &2.
There is an orthogonal decomposition

TS =FaFt (4)

of the tangent bundle of a 3-Sasakian manifold S, where F' is the subbundle spanned
by &',€2%,63. 1t follows from (1) and (3) that the restrictions (®%)* to F* of the
endomorphisms ®¢ = VE* are almost complex structures satisfying the quaternion
identities

(CI)a)J-o((I)b)J- — —(Sab]_ 4 Zﬁabc(@c)J—- (5)

As a consequence, the rank of F'* is necessarily a multiple of 4, and the dimension of
S equals 4n + 3.

It follows from Definition 1.2 that the Killing fields £* span the Lie algebra sp(1)
of a local action of Sp(1) & SU(2) on S. Suppose now that the £ are complete,
so that Sp(1) acts globally on §. We let F denote the corresponding 3-dimensional
foliation tangent to the ‘vertical’ distribution F'. If § is complete and F is regular,
the leaves of F are diffeomorphic either to SO(3) = RP? or to Sp(1) = S® [52] and,
as explained in the Introduction, the quotient M = §/Sp(1) is a quaternion-Kéhler
manifold of positive scalar curvature. The only case in which the foliation F3; has S3
leaves is that of the Hopf fibration S***3 — HP", a fact which may be proved by
applying [45, Theorem 6.1]. With this exception, given a compact quaternion-Kéahler
manifold M of positive scalar curvature, the total space of the natural RP? bundle is
the unique 3-Sasakian manifold S fibering over M, and was studied by Konishi [33].
Its 3-Sasakian structure is completely determined by a result of [39].

Each 7 € sp(1) singles out a Killing field, a circle subgroup U(1), C Sp(1), and a
1-dimensional foliation F, subordinate to F giving S the structure of a Seifert fibred
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space. If F is regular then F, is regular for all 7. When § is complete the converse
is also true; if any of the foliations F, is regular than so is F, and in this situation
we say that S is a regular 3-Sasakian manifold [52]. It is well known that the quotient
S/U(1), is then a Kéhler-Einstein manifold which, for any 7, is isomorphic to the
twistor space Z of §/Sp(1). Moreover, S can be identified with the total space of
the circle bundle of unit vectors in the holomorphic line bundle L = x~/®™+1) over
Z, described in [37].

In the more general orbifold setting, it is necessary to interpret the above objects
as V-bundles [49, 2, 3|. Proofs of some of the corresponding properties summarized
below can be found in [5, 28, 29, 30, 31, 33, 54] and [7]-[9].

1.3 THEOREM. Let (S,g,£&%) be a 3-Sasakian manifold of dimension 4n+ 3 such that
the vector fields £* are complete for a = 1,2,3. Then

(i) g is Einstein with scalar curvature 2(2n + 1)(4n + 3);
(ii) ¢ is bundle-like (in the sense of [43]) with respect to each F, and F;

(iii) each leaf of F is totally geodesic and of constant curvature 1, and the space of
leaves is a quaternion-Kahler orbifold M of scalar curvature 16n(n + 2);

(iv) the space of leaves of F, is a complex orbifold Z of dimension 2n + 1 that is
independent of T, and has a Kédhler-Einstein metric of scalar curvature 8(2n+1)(n+1).
Moreover, Z may be identified with the orbifold twistor space of M , and is a projective
algebraic variety.

From (i) and the theorem of Myers, it follows that if S is complete as a Riemannian
manifold, then it is compact and 7;(S) is finite. Furthermore, if S is complete and
regular there is a fibration § — M with 7;(M) trivial, and it follows that 71(S) has
order 1 or 2. In the latter case, there is a lift to an S3-bundle, and from above M is
isometric to HP" and S is a sphere. In fact, both & and Z admit a second Einstein
metric formed by re-scaling g relative to (4) [8]; we shall justify this statement in the
case n = 2 at the end of the next section.

While renewed interest in 3-Sasakian manifolds is rather recent, there has been
more extensive effort made to understand the geometry of compact quaternion-Kéhler
manifolds of positive scalar curvature. It was proved by Alekseevsky [1] that the only
homogeneous spaces of this type are the symmetric ones classified by Wolf [58]. There
are no other known examples, and in real dimension 8 all positive quaternion-Kahler
manifolds are indeed symmetric [42]. More recent results in [36, 37] support a conjec-
ture that there are no complete non-symmetric quaternion-Kéhler manifolds of positive
scalar curvature. Given the above correspondence between 3-Sasakian and quaternion-



Ké&hler manifolds, Theorem B is a direct consequence of (i) [37, Theorem 0.1] and (ii)
[37, Theorem 0.3(ii)], and the latter in turn relies on a classification due to Wisniewski
[57] of compact complex Fano manifolds. In the present paper we comment no fur-
ther on the proof of Theorem B. As noted in the Introduction, there are infinitely
many homotopy types of complete irregular 3-Sasakian manifolds with by(S) =1 (see
Section 4), and we know of no restriction on m(S) when S is not regular.

2. Differential forms

For the remainder of this article, we shall suppose that (S, g,£%) is a complete (equiv-
alently, compact) (4n + 3)-dimensional 3-Sasakian manifold, which implies that the
vector fields &1, €2, €3 are complete.

Let QP(S) denote the space of p-forms on S; throughout this section we shall
suppose that p < 2n 4 1. Referring to (4), we shall say that a p-form u € QP(S) has
bidegree (i,p — 1) if it is a section of the subbundle of A’T*S isomorphic to the dual
of A'F® A" *(F'). In particular, u is called 3-horizontal if has bidegree (0,p), or
equivalently if £*|u =0 for a = 1,2,3. An element u € QF(S) is called invariant if
h*w = w for all h € Sp(1). In the regular case, there is an Sp(1)-bundle 7:S — M,
and w is both 3-horizontal and invariant if and only if it is the pullback 7*@ of a form
@ on the quaternion-Kahler base M .

Let ¢* = dn® denote the 2-form associated to the skew-symmetric endomorphism
®* = V¢, defined by (2) for a = 1,2,3. Definition 1.2 then implies that

aa — (ba + Zeabcnb /\ nC
b,c

is 3-horizontal. It follows from (3) that the closed 2-forms
W =r2¢* +2rdr A0, a=1,2,3, (6)

are associated to a triple of almost complex structures I', 2, I3 on Rt x S orthogonal
with respect to the metric
§=dr*+r%g. (7)

Using [46, Lemma 8.4], we immediately deduce

2.1 PROPOSITION. If (S, g) is 3-Sasakian, the cone (R™ x S, g) is hyper-Kéhler.



When § is regular, the metric g is locally equivalent to the natural hyper-Kahler met-
ric associated to the quaternion-Kahler manifold M described by Swann [50]. Propo-
sition 2.1, first proved in [8], provides the most direct link between 3-Sasakian and
quaternionic geometry.

The Killing fields £ transform according to the adjoint representation of Sp(1), and
the same is true of the associated triples n*, ¢%, and ®*. For example, if h € Sp(1),

we may write

h®® =3 hebdt, ¢ =1,2,3, (8)
b

where h% are components of the image of h in Sp(1)/Zy = SO(3). The 3-forms
T=n A’ An,
O=1"A¢ = 0" A" +6T )

have respective bidegrees (3,0), (1,2), and are clearly invariant. Their exterior deriva-
tives are

dY =" AP NG + P AP AS + 0P A A, (10)
and
dO = Q + 2d7, (11)
where the 4-form o
0= Z NG

is 3-horizontal and invariant. In fact, €2 is the canonical 4-form determined by the
quaternionic structure (5) of the subbundle F-, and is the pullback of the fundamental
4-form €2 on the quaternion-Kéahler orbifold M .

We next aim to prove Theorem A. Let
HP(S) ={uePPS):du=0=d=xu}

denote the finite-dimensional space of harmonic p-forms on §. Any harmonic form
u is necessarily invariant because of the homotopy invariance of cohomology [59]. Fix
a € {1,2,3} and set £ = £* so as to consider S temporarily as a Sasakian manifold.
The tensor ® = V¢ extends to an endomorphism of (P(S) by setting

((I)U)(Xl,XQ, e ,Xp) = XP:U,(Xl, .. ,(I)XZ .. .,Xp). (12)

=1

With this notation, we state the fundamental results of Tachibana [53].
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2.2 THEOREM. Let u € HP(S), p <2n+1. Then
(i) £|u=0, and
(ii) Qu € HP(S).

It is easy to prove (i) in the simple case p = 1. Indeed, let
u=a+ fn

be a closed invariant 1-form, where «(§) = 0, and f is a function. The vanishing of
the Lie derivative of u along ¢ implies that 0 = d(£ | u) = df, so that f is a constant
and 0 = da+ f¢ where ¢ = dn. Then

— 2n _ 2n+1
0= [dandmnm == [ féminn

Since ¢?"*! A 7 is a non-zero multiple of the volume form of S, we obtain f =0 and
€| u=0. A first step in the proof in [53] of the general case is the assertion that, with
the hypotheses of Theorem 2.2, £ | u is coclosed.

Theorem 2.2(i) implies that any harmonic p-form with p < 2n+ 1 on the compact
3-Sasakian manifold S is 3-horizontal. Apply (12) so as to obtain

U HP(S) = HP(S), a=1,2,3, p<2n+1,
and define further
(Iau)(Xl, XQ, ce ,Xp) == ’U,((baXl, (I)aXQ, ey @aXp).

The basic identity (1) combines with Theorem 2.2 to show that Z%u is a linear combi-
nation of (®?)¥u for 0 < k < p. Thus Z? also maps HP(S) into itself. Moreover, (5)
translates into the identity

TPoT® = (—6™)P1 4 Y (ete)PTe. (13)

As pointed out by Kuo, when p is odd these relations endow HP(S) with an almost
quaternionic structure.

2.3 THEOREM. Let ue€ HP(S), p<2n+1.
(i) If p is odd then u = 0.
(ii) If p is even then T%u =u for a = 1,2, 3.
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Proof. Let u € HP(S). We shall in fact show that Z'u = Z?u irrespective of whether
p is even or odd; the result then follows from the identities (13) and symmetry between
the indices 1,2,3. By (8), we may choose an isometry h € Sp(1) so that h,®' = ®2.
Both u and Z'u are harmonic, so h*u = u and

(Tru)(Xy,..., Xp) = (h(T ) (X1, ..., X))
= u((h®)(X1),- .., (h®')(X}))
= u(®’Xy,...,0°X,)
= (T%u)(Xy,...,X,).

This completes the proof. QED

Theorem 2.3(i) immediately implies Theorem A of the Introduction. We may in-
terpret Theorem 2.3(ii) as follows. When p = 2k, the Sp(n)Sp(1)-structure of the
‘horizontal’ bundle F*- (see (5) and (8)) allows us to write

N(FHY =PVies, (14)

where each V; is a real subbundle arising associated to a representation of Sp(n), and
Y; is the real irreducible representation of Sp(1)/Zy = SO(3) of dimension 2i + 1.
Then any harmonic form takes values in the subbundle Vj of forms which are invariant
by the action of Sp(1), and which are of type (k, k) relative to Z® for a = 1,2, 3.

To complete this section, we show how differential forms can be used to relate 3-
Sasakian 7-manifolds and G4-structures. A (Gy-structure on a 7-manifold is determined
by a 3-form ¢ which is ‘non-degenerate’ and ‘positive’ in an appropriate sense [46].
Such a form determines automatically an orientation and a Riemannian metric g, and
the latter is said to have weak holonomy G5 if

dp = c * @, (15)

where * is the star operator relative to g (and therefore ¢) and ¢ is a constant whose
sign is fixed by the orientation convention. The terminology is due to Gray [24], who
showed that any such metric is Einstein with positive scalar curvature. The equation
(15) implies that ¢ is ‘nearly parallel’ in the sense that only a 1-dimensional component
of Vi is different from zero [17].

The sphere S7 with its constant curvature metric is isometric to the isotropy ir-
reducible space Spin(7)/Gy. The fact that Go leaves invariant (up to constants) a
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unique 3-form and a unique 4-form on R’ implies immediately that this space has
weak holonomy G5, although extra 3-forms materialize when the symmetry group
Spin(7) is reduced to one of its proper subgroups SU(4) or Sp(2). These observations
can be applied in a more general setting, since a metric g has weak holonomy G5 if and
only if the metric g of (7) has holonomy contained in Spin(7) [44, 4]. Special types
of weak Go structures then arise if the holonomy of § reduces to SU(4) or Sp(2), in
which case the metric ¢ on M is subordinate to respectively 2 or 3 independent G,
3-forms. The situation has been characterized in terms of Killing spinors by Bér [4],
who refers to these two non-generic cases as type (2,0) or (3,0) respectively.

Since Sp(2) is the holonomy group of a hyper-Kéhler manifold, Proposition 2.1
confirms that any 3-Sasakian metric on a 7-manifold has weak holonomy G5 of type
(3,0). We may determine one of the corresponding 3-forms by setting

WAW F W AW — WP AW =certx o4 4rddr A g,
since the left-hand side is a 4-form invariant by Spin(7) [14]. This gives ¢ = —4 and
171 2 0722 3,73
p=n Ao+ NG =" Ao —2T,

and two other forms are obtained by changing the position of the first minus sign.
On the other hand, it is well known that S7, regarded as the space Sp(2)/Sp(1) and
fibering over S*, admits a ‘squashed’ Einstein metric which does not have constant
curvature. This metric also has weak holonomy G, since the associated cone metric
has holonomy equal to Spin(7). An analogous metric with holonomy (equal to or
contained in) Spin(7) exists on an open set of the spin bundle of any 4-dimensional
self-dual Einstein orbifold [15], and the next result is predicted by this fact.

2.4 PROPOSITION. A 7-dimensional 3-Sasakian manifold (S, g) admits a metric ¢'
with weak holonomy G, but not homothetic to g.

Proof. We may find locally an orthonormal basis {a?!, a2, a3, o*} of 1-forms spanning
the annihilator in 7*S of F' in (4) such that

¢ = 2('Aa?—a*Aa?),
= 2(a' Aa® —a* A a?),
¢ = 2(at Aot —a?Aad).

S
|

In addition, set
o®=Ap, =X ol = NP
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where A is a positive constant to be determined. The Riemannian metric ¢’ for which
the o'’s form an orthonormal basis is related to g by a non-trivial change of scale on
the subbundle F' of T'S. With respect to ¢’, the 3-form

=100+ N7

can be expressed as 125 — 345 + 136 — 426 + 147 — 237 4 567, and therefore defines a
compatible GGy-structure. Moreover,

dp = A0+ AN\ +1)dT,
xp = —%)\QdT - 21—49,

and (15) is solved by taking A = 1//5. QED

By Theorem 2.3 and Poincaré duality, any compact 3-Sasakian 7-manifold has
b1, bs, by, be all zero. Moreover, any harmonic 2-form lies in the 3-dimensional subspace
Vi, which may be identified with the subbundle A™ of /\2F L. on which the * operator
acts as +1. These remarks highlight the interest in searching for compact manifolds
with b3 # 0 that admit an Einstein metric with weak holonomy G5.

3. Regular 3-Sasakian cohomology

Throughout this section we assume that (S, g,£?) is a compact 3-Sasakian manifold
for which the foliations F,, F are regular, so that 2 = S/U(1) and M = §/Sp(1)
are manifolds endowed with their canonical Kahler and quaternion-Kahler structure
respectively. Because S is a specific SO(3)-bundle over M and U(1)-bundle over Z,
it is straightforward to relate the Betti numbers b,(S), b,(M), b,(Z). Some of the
results we discuss next can be found in [30].

Let u € HP(S), supposing always that p < 2n+1. Since u is both 3-horizontal and
invariant, it is the pullback 7*@ of a form 4% on the quaternion-Kéahler manifold M.
We claim that 4 is itself harmonic. Certainly 4 is closed, as 7*diu = du = 0 and 7* is
injective at the level of forms. It therefore suffices to prove that *u is closed, where *
here denotes the star operator on M. In fact, since 7 is a Riemannian submersion,

wxu =" (xu) AT,
and

0=d(xu) =n"(d*u) AT + (—1)Pn*(x0) A dY.
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The terms on the right have respective bidegrees (3,4n—p+1), (2,4n—p+2) relative to
(4), and the result follows. In this way, we see that the induced mapping 7*: H*(M) —
H*(S) is surjective.

The formula (11) shows that 7* is not injective on cohomology since it maps the
fundamental class [()] to zero. In fact, Theorem 3.2 below implies that the kernel of
7* is exactly the ideal generated by [Q], we prove this with more topological methods.

3.1 LEMMA. Let p <2n+ 1. Then by(S) = b,(2) — b,—2(2).

Proof. Applying the Gysin sequence to the fibration S — Z gives the following exact
sequence:

o HPY(S) = HP2(2) -2 HP(2) - HP(S) = HP Y(8) — - --

Now, & is covered by the total space of the circle bundle in the canonical bundle K of
Z , and the Kahler-Einstein metric of Z arises from & in accordance with Kobayashi’s
theorem [45, 32]. It follows that the connecting homomorphism ¢ is given by wedging
with a non-zero multiple of the Kahler form of Z, and this is well known to be injective
so long as p < 2n + 2. The Gysin sequence therefore reduces to a series of short exact
sequences up to and including H?"*1(8S), and the lemma follows. QED

3.2 THEOREM. Let (S,g,&%) be a compact regular 3-Sasakian manifold of dimension
4n + 3, with quotients M, Z. Then the odd Betti numbers of both M and Z all
vanish, and

bgk(M) — ka_4(M) = bgk(S) = bgk(Z) — ka_Q(Z), k S n.

Proof. The vanishing of by, 1(Z) for k& < n follows by applying Theorem 2.3(i) to
the equations boy1(Z2) = bog11(S) + box—1(Z) for k£ < n (with the obvious convention
that b, = 0 if p < 0). The result for £ > n follows from Poincaré duality as Z has
even real dimension. Applying the Gysin sequence of the fibration Z — M gives

bp(Z) = bp(M) + bp—2(M),
and the remainder of the theorem follows. QED

Let M be a compact quaternion-Kéahler 4n-manifold with positive scalar curvature.
The proof that the odd Betti numbers of M all vanish was first given in [45] by
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showing that the Hodge numbers AP of the twistor space Z are zero except when
p = ¢. The last result can in fact be deduced from Theorem 2.3(ii), which also implies
that a harmonic 2k-form on M is of bidegree (k, k) relative to every almost complex
structure subordinate to the Sp(n)Sp(1)-structure at a point (cf. (14)).

The proof of Lemma 3.1 shows clearly that for £ < n, each Betti number by (S)
coincides with the dimension of the primitive cohomology group H3*(Z,R), isomorphic
to the cokernel of the injective mapping

H*7%(Z R) — H*(Z,R), k<n,

defined by wedging with the Kdhler 2-form. On a quaternion-K&hler manifold, wedging
with the canonical 4-form €2 determines in an analogous manner an injection

H?*4(M,R) — H*(M,R), E<n+1,

[6, 34, 20]. It follows that the Betti numbers of S may also be regarded as the ‘primitive
Betti numbers’ of M ; this fact appears in a different guise in [30].
Theorem 3.2 implies that the Euler characteristics of M and Z are related by the
formula
X(2) = 2x(M).
For future reference, we note that the signature 7(M) = b3, (M) — b,, (M) may be ex-
pressed in terms of the Betti numbers of S. Indeed, the intersection form on H?*(M,TR)

is known to be definite [38, 20], and with the appropriate orientation convention,
T(M) = (=1)"bop, (M) [37, (5.6)]. It follows that

[n/2]
(M) = (-1)" Z bon—1k(S), (16)

k=0

a formula which is illustrated in Section 4.

3.3 THEOREM. Let S be a compact regular 3-Sasakian manifold of dimension 4n+3,
with n > 2. The Betti numbers of M, Z and S satisfy the following constraints:

n—1
(i) ) (6k” + 6k — 6nk +n® — 4n + 3)bayk(M) + n(n — 1)bon (M) = 0;

k=0
n

(i) > (6k> — 6nk + n® — n)by(Z) = 0;

k=0

(iii) ik(n —k+1)(n—2k+1)by(S) =0.
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Proof. Part (i) was proved in [37, Section 5]. Parts (ii) and (iii) follow directly from
this after substituting by means of the equation in Theorem 3.2. As an example, we
verify (iii) by deducing (i) from it. Let ¢y = k(n — k 4+ 1)(n — 2k +1). Then

n n—2
D erbar(S8) =D (ck — cre2)bak(M) + cnotban—z + cobon,
k=0 k=0

and for 0 <k <n-—2,

Ck—Cry2 = k(n+1—k)(n+1—-2k)— (k+2)(n—1—-k)(n—3 —2k)
k(6n —2—8k) —2(n—1—k)(n—3—2k)
= —2(6k* + 6k — 6nk +n® — 4n + 3).

The values of ¢,—; and ¢, are also consistent with (i). QED

The relations of Theorem 3.3(iii) for low values of n are given in Table 1. The
last three lines correspond to the dimensions of the exceptional homogeneous spaces
mentioned in the next section, and to save space list only the coefficients of (by, ..., by,)
with any common factors removed. Because it is invariant by the symmetry k& <>
n+1—k, the constraint is satisfied by any regular 3-Sasakian manifold & whose Betti
numbers satisfy the ‘duality’

bgk(S) = bgn_2k+2(8), 1 S k S n. (17)

Given (17), we might say that the cohomology of S is ‘balanced’. This is true of S4"+3
by default, and Proposition 4.1 below implies that all the homogeneous 3-Sasakian
manifolds have balanced cohomology except for those with isometry group of type D
and E. Another consequence is that

bo(S) =0, 1<k<[i(n+1)],

implies that b,(S) = 0 whenever 0 < p < 4n + 3.
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‘ ‘ relation or coefficients thereof
by = by
b2 - b6

2by + by = bg + 2bg
5by + 4by = 4bg + 5byg
5by + bbs + 2bg = 2bg + Hb1g + Hbio
Tby 4+ 8by + 5bg = 5b1g + 8b19 + Thyy
28b2 + 3564 + 27b6 + 10b8 = 10b10 + 27b12 + 35b14 + 28b16
12by + 16by + 14bg + 8bg = 8b1o + 14b14 + 16b1g + 12b1g

15,21, 20, 14, 5
40,65, 77,78,70, 55, 35,12
126, 225, 299, 350, 380, 391, 385, 364, 330, 285, 231,170, 104, 35

==
o o ©| 0| | | ot x| o || S

[\
oo

Table 1

4. Examples

The classification of compact 3-Sasakian homogeneous spaces, i.e. compact 3-Sasakian
manifolds for which the group of automorphisms of the 3-Sasakian structure acts
transitively, was obtained in [8]. Any such manifold is necessarily regular, and the
quaternion-Kéhler quotient is one of the symmetric spaces described by Wolf [58]. The
space forms S**3 and RP**® are both homogeneous 3-Sasakian manifolds fibering
over the quaternionic projective space HP". However, a compact homogeneous 3-
Sasakian manifold of non-constant curvature is necessarily the total space of a unique
RP2-bundle over a Wolf space.

Any compact homogeneous 3-Sasakian manifold S has the form G/K, where G is
(possibly a finite cover of) its isometry group, and K a subgroup of G. Table 2 lists
one pair (G, K) for each homogeneous space S, but ignoring the non-simply-connected
example RP*"™3 In each case, the group of isometries generated by the vector fields
£* may be regarded as a subgroup Sp(1) of G such that K N Sp(1) & Z,, and the
fibration & — M takes the form

G/K — G/(K 5p(1)),

where K Sp(1) denotes K xz,Sp(1). The 3-Sasakian metrics on these coset spaces are
as always Einstein, and were considered in this context by Besse [5]. However, with the
exception of the constant curvature case, the metrics are not the normal homogeneous
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ones, as they are not naturally reductive and thus are not obtained from the bi-invariant
metric on G by Riemannian submersion. All other compact homogeneous manifolds
admitting a (non-homogeneous) 3-Sasakian structure are covered by spheres [51].

[dim§ | G [ K]
4n + 3 An_|_1 = SU(TZ+2) An—l XZn T!
8k —1 Bk+1 = SO(Zk —+ 3) Bk—l X A1
dn+3| Cpy1 = Sp(n+1) Cy
8¢+ 3 D(H_Q 250(264—4) Dg X Al

43 Eg As

67 E Ds

115 Fy B,

31 2} Cs

11 GQ A1
Table 2

4.1 PROPOSITION. The Poincaré polynomials of the homogeneous 3-Sasakian mani-
folds are as given in Table 3.

Proof. An expression for the Poincaré polynomial of a coset space G/H with G and
H compact Lie groups of equal ranks can be found in [25]. The latter also explains
how to compute the minimal model for the de Rham algebra, and we shall illustrate
the essence of this for the 115-manifold & = Eg/F;. Other entries of Table 3 may be
verified by the same methods.
The exponents
er : 3,11,15,19, 23,27, 35;
eg : 3,15,23,27,35,39,47,59

represent the degrees of the generators of the invariant forms on the respective Lie
algebras (see for example [16]). Consider the freely-generated graded algebra

A= /\(xs, L15, X23, 27, L35, L39, L47, $59) X S(Z4, 2125 165 2205 224 2285 236),

where the degrees of elements are represented by subscripts, and the even generators
correspond to the exponents of e; with a shift in degree of +1. A differential is defined
on A by setting dz; = 0, and dz; equal to a combination of the even generators that
reflects restriction of the associated invariant polynomials on ¢g to those on ¢;. Taking
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it for granted that z;,; appears with a non-zero coefficient in dz;, one merely strikes
out pairs (z;, z;41) leaving

Ax N (39, Ta7, T59) ® S(212, 220),

and by construction the non-zero differentials dxsg, dx47, drs9 become combinations of
decomposable elements. The Betti numbers of S coincide with those of the differential
graded algebra A; they are all zero except that b, =1 when p or 115 — p equals one

of 0,12, 20, 24, 32, 36, 44, 56, as indicated below. QED
[ G ] P(S,t)
n
Apii Z(tZi + t4n—|—3—2i)
S py—
Bk—l—l Z (t4z + t8k—1—4z)
i=0
Cri1 1+ tint3
Df—|—2 t?f + t6€+3 + i(tllz + t8€+3—4i)
i=0
Es 1+t + 8+t + e 60+
By |14+t 40+ 412+ 44"+ 4 -+
Fy L+#5 467+t
Gy 1+t
Table 3

It is clear from Table 3 that all the homogeneous 3-Sasakian manifolds except for
the one with isometry group Dy o with 2|¢ have b,(S) < 1. Conversely, this inequality
would severely limit the possible Betti numbers of a regular Sasakian 3-manifold, by
the constraint of Theorem 3.3(iii). The latter is especially striking for the spaces of
type D and F, since Table 3 reveals that their Betti numbers satisfy

bon—ok = bak, 0 <k <mn,
and are unbalanced (see (17)). For example for Eg/E; the arithmetic reduces to
391 + 285 + 170 — 104 — 231 — 385 — 126 = 0;

the reader may enjoy checking that the remaining entries of Tables 1 and 3 exhibit
consistent information.
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Using (16), the signatures of the Wolf spaces can be read off from Table 3 and
confirm results of the paper [26] and its appendix. For example, the Wolf space
Es/(E7 Sp(1)) has dimension 112 and signature equal to 8.

We conclude this section by mentioning the construction of non-homogeneous 3-
Sasakian manifolds that is described in more detail in [8]. Let n > 3 and suppose
that p = (p1,...,pn) € Z7} is an n-tuple of non-decreasing, pairwise relatively-prime,
positive integers. Let S(p) be the left-right quotient of the unitary group U(n) by
U(l) x U(n —2) C U(n); x U(n),, where the action is given by the formula

™ I, O
— .. 2
(T, B)W = - W(® B).

Here, 7 € U(1), B € U(n — 2), and W € U(n). Then S(p) is a compact, simply
connected, (4n — 5)-dimensional smooth manifold which admits an Einstein metric
g(p) of positive scalar curvature and a compatible 3-Sasakian structure. Furthermore,
7o(S(p)) = Z and

H™*(8(p),Z) = Z]r,

n

where 7 = 0,_1(p) = D>, p1-+-Dj Py is the (n — 1)st elementary symmetric polyno-
i=1
mial in the entries of p.

All the S(p) spaces are inhomogeneous unless p = (1,...,1). The 3-Sasakian
structure on S(p) is obtained explicitly thus providing the first such examples of
Einstein metrics with positive scalar curvature and arbitrary cohomogeneity. In fact
there are subfamilies in S(p) which are strongly inhomogeneous, that is not homotopy
equivalent to any compact homogeneous space [9].

5. Further results

Of the theorems in the Introduction, it remains to establish part (ii) of Theorem C. This
will follow immediately from Theorem 5.1 below, but we first review some necessary
index theory from [47, 37].
Let M be a quaternion-Kahler manifold. The spin bundle of M is given by
@ RPY where

pt+g=n

RPY = /\ﬁE ® SYH,
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and F, H are standard Sp(n), Sp(1) vector bundles. Provided n + p + ¢ is even, we
may consider the index #¢ of the Dirac operator on M coupled to RP¢. The Atiyah-
Singer index equates i*? to the evaluation of ch(R”4)A on the fundamental class [M].
On the other hand, according to [45],

0, p+qg<n
0 = { (=1 (bop(M) + bapo(M)), p+g=n
d7 p =n + 27 q = O’

where d is the dimension of the isometry group of M. These indices are expressed
below in terms of the Chern classes c¢y; = c2i(F), 1 < i < n, of F, and the class
u = —co(H) which is a real multiple of [€2] (see (11)).

5.1 THEOREM. Let M be a compact quaternion-Kahler manifold of positive scalar
curvature of dimension 12 or 16 with by(M) = 1. Then M is isometric to HP? or
HP*.

Proof. First suppose that dim M = 12. The complex Grassmannian has by = 2, so by
[37, Theorem 0.3(ii)] we may assume that by(M) = 0. Table 1 now shows that M has
the same Betti numbers as HP?.

If V is an integral combination of the RP? of virtual rank 7, then
ch(V)A = rAs + chy A, + chyA; + chg, (18)

where chy, € H?*(M,R) is the appropriate component of the Chern character ch(V).
We put this into practice by considering the virtual bundles

Vi = (E—3H)(S°H — 3) = R"? — 3R"* — 3R%® + 6R"*,

Vo = (S°H — 3)?H = R — 4R%® 4+ 5R™,

Vs = (S°H — 3)H = R — 2R™.
All these have r = 0, and chy(V;) = 0 for i = 1,2; thus (18) does not require As.
Identifying H'?(M,Z) with Z, we obtain

—2(3u® + 200 + cyu) = — (bo(M) +1) — 3 = —4,
%(11u3 + cou?) = d — 4,
%(56113 + 32cou? + 3ciu — cqu) = 1.
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Now suppose that M is not isometric to HP?, and therefore [1] not homogeneous.
Applying the inequality cou? > u? (which is equivalent to [45, Lemma 7.6]), and the
fact that d is necessarily less than 36 = dim Sp(4) to the last equation gives u® < 1.
Recalling that 4u € H*(M,Z), we deduce that 4u = m& where £ is an indivisible
integral class and 1 < m < 3. Since by = 1, the characteristic classes co and u must
be proportional, so we may suppose that ¢, = Au for some A € Q. Now 4c¢y is an
integral class, so we may write A = p/q with p € Z, ¢ € {1,2,3}. Eliminating ¢4 and
then setting ¢y = Au gives

(59 + 34X\ + 3)\2)u3 = 96,
8(11 + )\)u3 =3d — 12,
and
256(A + 11)
32 + 34\ +59°

A computer check reveals that there are no integers d with 4 < d < 36 and 6\ € Z.
The 16-dimensional case proceeds in exactly the same way, using the virtual bundles

d=

Vi = (N:E—3EH +65°H)(S*H — 3)
~ R?>? — 3R 4 6R% — 3R*>* + 6RY — 12R%? + 6
Vo = (S’H —3)? = R®* —5R%? 4+ 10
Vs = (S°H —3)3 = R% — 7R 4+ 21R%? — 35
V, & (E—4H)(S*H — 3)H = R'® — 4R%* — 2RY 4+ 4R%? 4+ 8.

This gives
4ut + Beyu? + 2cu% + cgu = 10,
4_1{)(26“4 + 17cou® + 3cgu2 — c4u2) =1,
?(SULL +cud) =d — 7,
_%(224% +152650% + 92u? + 56c4u2 + 6esu + 3cpcans) = —5.

Assuming that M is not isometric to HIP*, one proves that d < 55 and u* < 1. Set
co = Au as before; this time 2 \u € H*(M, Z), forcing A € Z. Eliminating cgu,

(200 + 134X + 9AH)u? + (44 + 3N)esu? = 390,
(26 + 17X + 32?)u? — cqu? = 45,
DE+Nut=d-T.
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Eliminating c4u? and solving for d yields

80(A + 8) (9 + 158)

d="7
T3 14BN 4520+ 112)

which has no integral solutions with 7 < d < 55. QED

To conclude this article, we extend the class of geometrical structures so far con-
sidered by bringing the Riemannian product % = S' x S of a circle and a compact
3-Sasakian manifold into the picture. This product is a hyper-Hermitian manifold
which is locally conformally hyper-Kéhler [8]: if w', w? w? denote the 2-forms asso-
ciated to the product metric g of 4 and the complex structures, then there exists a
closed 1-form « such that

dv* =w'Na, a=1,2,3.

The ‘Lee form’ « is not exact, for otherwise g could be scaled into a hyper-Kahler
metric, but by(#) = 1 and H cannot admit any Ké&hler metric. A result of Gauduchon
[22, 23] implies that that any locally conformally hyper-Kéhler manifold which is not
hyper-Kahler is a generalized Hopf manifold, which means that Va = 0.

In his study of generalized Hopf manifolds, Vaisman identified the 2-dimensional
foliation £ generated by of and Jof [56]. Assuming leaf compactness, H is the total
space of an analytic V -submersion onto a Kahler V' -manifold in the sense of Satake
[49], and all the fibers of the submersion are complex 1-dimensional tori. Similarly,
assuming that all leaves of the 1-dimensional foliation F, generated by of are compact,
‘H is a Seifert fibered space of an analytic V -submersion onto a Sasakian V -manifold.
In particular, if 7, and £ are regular (in this case H is called ‘strongly regular’), then
‘H is a flat circle bundle over a Sasakian space and there is diagram of fibrations

H — S
51
Z

described in [56]. Moreover, H is a flat principal circle bundle over a principal circle
bundle over Z whose Chern class differs only by a torsion element form the Chern
class induced by the Hopf fibration.
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If (H, h) is locally conformally hyper-Kéhler but has no hyper-Kahler metric in the
conformal class of h one can get an automatic extension of the above diagram [41, 40].
The hypercomplex structure allows one to define the following foliations of H: (i)
the 1-dimensional foliation F, defined by «, (ii) 2-dimensional foliations £¢ defined
by {af, Jiaf} for each i = 1,2, 3, (all three are equivalent), and (iii) a 4-dimensional
foliation F, defined by {of, Jiof, Joof, Jsaf}. The leaf space S = H/F, is easily
seen to have a natural Sasakian 3-structure [40] and the leaf space M = H/F, is a
quaternion-Kéhler orbifold of positive scalar curvature [41]. In the strongly regular
case we get the following diagram of fibrations [40]

H — S

Sl
lﬂ v lmﬁ
Z — M.

Our theorems have a number of interpretations for the structure of H, now assumed
to be a compact strongly regular generalized Hopf manifold of dimension 4n+4 which
is locally conformally hyper-Kéahler. Applying the Gysin sequence to the double circle
fibration described above yields

bp(H) = bp(2) + bp-1(Z) — bp—2(2) = bp-3(2), p<2n+2.

Using the twistor fibration Z — M, one can derive similar relations between the Betti
numbers of H and the quaternion-Kahler base M which will be a manifold under
strong regularity assumption on £. As a counterpart to Theorem 3.2, one has

5.2 COROLLARY [40]. Let H be a compact strongly regular generalized Hopf surface
of dimension 4n + 4, which is locally conformally hyper-Kéhler. Then

bgk(H) = b2k+1 (7‘[) = bzk (M) - bgk_4(M), ]C S n.

In the strongly regular case, when all spaces of the diagram are smooth manifolds
and 7 is a flat circle bundle over S, we get b,(H) = b,(S) + b,—1(S). The following
extends results of [40].

5.3 COROLLARY. Let H be a compact locally conformally hyper-Kahler manifold

of real dimension 4n + 4 which is not hyper-Kéahler, and suppose that H is strongly
regular. Then
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(i) ba(H) =b3(H) =0 unless H is S' x U(n+1)/({U(n —1) x U(1));
(ii) b4(H) =0 and n = 3 or 4 implies that H is either S* x S**3 or one of the two
flat circle bundles over RP*"3;

(iii) Zn:k(n —k+1)(n — 2k + 1)by(H) = 0.

k=1
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