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Geometry of the Scalar Couplings
in N=2 Supergravity Models

KRzYSzZTOF (GALICKI

ABSTRACT: We describe the quaternionic geometry of various o-model target spaces
for the hypermultiplet couplings in 4-dimensional N = 2 conformal and Poincaré supergravity
models. The process of eliminating the non-physical superconformal gauge fields of chiral S U(2)
and dilatations is examined in the language of the quaternionic associated bundle. The -
model target space X parameterized by the scalar fields of the hypermultiplets in an N = 2
conformal supergravity-matter Lagrangian is shown to be the quaternionic associated bundle
of the o-model quaternionic Kahler target space M of the corresponding N = 2 Poincaré
supergravity-matter system. The manifold X is a special hyperkihler manifold with an isometric
SU(?) action rotating the hyperkihler structure and M can be obtained as a certain SU(Q)
reduction of X. This suggests possible generalizations of the superconformal tensor calculus
and the Lagrangian constructed by de Wit et al. The quaternionic Kahler join and some new
matter couplings are also discussed.

1. Introduction

Recently 4-dimensional N = 2 supergravity theories coupled to matter multiplets
have received a lot of renewed attention. The focus of this attention is the geometry of
the manifolds allowed as target spaces of locally N = 2 supersymmetric (0, %, 1) vector
multiplets [1]. Any such manifold M is Kahler, and it is characterized by the existence of a
holomorphic Sp(2n+2,R) ® C* vector bundle over it with nowhere-vanishing holomorphic
section . The Kéahler potential is then given by the logarithm of the Sp(2n+2, R) invariant
norm of 2. The geometry of M is often called special geometry [2] and it is relevant to
compactified string theories. For instance, it is well-known that both the moduli space of
the Calabi-Yau threefolds and the moduli space of the ¢ = 9, (2, 2) conformal field theories

are special manifolds.

On the other hand, 4-dimensional N = 2 supergravity-matter systems with locally
supersymmetric (0, %) chiral multiplets are described by geometry of a different kind. Just
as in the vector multiplet case, the invariance of the action under the local supersymme-
try transformations puts certain restrictions on the geometry of the underlying o-model
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manifold M parameterized by the scalar fields of the chiral multiplet. Here M must be a
(pseudo-)quaternionic Kahler manifold. The requirement of the correct sign of the kinetic
term further restricts M to be a quaternionic Kéhler manifold (Sp(n)-Sp(1) holonomy,
dimM = 4n) of negative scalar curvature. Witten and Bagger explicitly constructed the
most general form of such couplings in terms of the geometry of M [3]. (There are some
additional global restrictions on M but those seem to be relevant only when M is smooth,
compact, and of positive scalar curvature.)

The first two nonlinear matter couplings in N = 2 supergravity theory were de-
rived by Breitenlohner and Sohnius [4]. These are o-models with the scalar matter fields
parameterizing non-compact symmetric homogeneous Wolf spaces: the quaternionic pro-
jective 4n-ball HH"™ = Sp(n,1)/Sp(n) x Sp(1) and the complex Grassmannian X" =
U(n,2)/U(n) x U(2). Later de Wit et al. gave a very general form of the N = 2 super-
gravity Lagrangian coupled to an arbitrary number of Yang-Mills and scalar multiplets [5].
They pointed out that both of the above couplings can also be obtained in their formal-
ism. However, as already noticed in [6], Witten and Bagger’s Lagrangian is more general.
It gives all interactions in terms of the geometric properties of an arbitrary quaternionic
Kéhler manifold M with negative scalar curvature. The Lagrangian of [5], although it in-
cludes interactions with an arbitrary number of vector multiplets, can describe only those
chiral multiplet couplings which correspond to o-models on quaternionic Kahler mani-
folds of a specific kind. These are the quaternionic Kahler manifolds that are quaternionic
Kahler quotients of the quaternionic projective spaces HP" = Sp(n + 1)/Sp(n) x Sp(1)
or their non-compact and pseudo-Riemannian analogues (such as, for instance, HH").
The quaternionic Kdhler quotients were first introduced by Galicki and Lawson [7,8] as
a generalization of both the Marsden-Weinstein reduction for symplectic manifolds [9]
and the hyperkihler reduction of Hitchin et al. [10] It is true that some of the Wolf
spaces are indeed quaternionic Kahler quotients of the quaternionic projective spaces.
The Wolf space X™ = U(n + 2)/U(n) x U(2), for example, is obtained as the quater-
nionic Kéhler quotient of HP"*! by U(1) C Sp(n + 2) acting diagonally. Similarly,
its noncompact dual X™ = U(n,2)/U(n) x U(2) may be obtained as a quotient of the
pseudo-quaternionic Kahler manifold Sp(n,2)/Sp(n, 1) x Sp(1) by the diagonal circle ac-
tion of U(1) C Sp(n,2). In our previous work (see [7]) we showed how to get Y™ =
O(n+4)/0(n) x O(4) as the Sp(1) C Sp(n +4) quotient of HP"*3. Similarly, its noncom-
pact dual Y = O(n+4)/0(n) x O(4) can be constructed as a quaternionic Kihler quotient
of Sp(n,4)/Sp(n,3) x Sp(1). Hence, both Y™ and ¥™ o-models can also be coupled to
the N = 2 supergravity using the approach of de Wit et al. However, not all manifolds
with Sp(n)-Sp(1) holonomy are quaternionic Kéhler quotients of the quaternionic pro-
jective space, quaternionic hyperbolic space or their pseudo-Riemannian analogues. In
particular, it was observed by Swann [11] that this is the case with the five examples of
quaternionic Kéhler manifolds which are cosets of the exceptional Lie groups: G2/SO(4),
F5/Sp(3) x Sp(1), Es/SU(6) x Sp(1), E7/Spin(12) x Sp(1), and Eg/E7 x Sp(1). In fact,
more is true: None of these five spaces is a quaternionic Kahler quotient of another.

The quaternionic Kahler quotient technique was successfully used to construct many
new quaternionic Kéhler manifolds of negative scalar curvature [6,12] (in particular, self-



dual and Einstein metrics with negative cosmological constant when M is 4-dimensional),
as well as compact quaternionic Ké&hler orbifold metrics of positive scalar curvature [8,13].
All of them may be used as o-model target spaces for the hypermultiplet couplings in
N = 2 supergravity and the methods of [5] can be applied to construct the whole invariant
Lagrangian.

In this paper we want to examine the problem of possible generalizations of de Wit et
al.’s Lagrangian to describe any (0, 1) hypermultiplet coupling allowed in the 4-dimensional
N = 2 supergravity. Such generalizations, if possible, would bridge the apparent gap be-
tween their Lagrangian and that of Bagger and Witten. First we find an elegant geometric
description of the process of eliminating superconformal gauge fields. In the formalism of
de Wit et al. some of the superconformal gauges decouple algebraically and, as a result,
one obtains an N = 2 Poincaré supergravity theory. Let us describe the simplest case. One
starts with a local N = 2 superconformally invariant theory coupled to the hypermultiplets
given by 4r scalar fields A*. The fields A can be thought of as global coordinates on the
r-dimensional quaternionic vector space H". If, in addition, we equip H" with the standard
flat (pseudo-)metric < -,-> then (X,d) = (H",<-,->) becomes a (pseudo-)hyperkihler
manifold. The hyperkéhler 2-forms are given by $Im(dz ® du) = w'i + w?j 4+ w3k where
{i, 4, k} are the quaternionic units and u = u(A) is the quaternionic coordinate on H". The
group of N = 2 superconformal transformations acts on the scalar fields AY. The chiral
SU(2) ~ Sp(1) generated by the gauge field foj acts on A € H" rotating the hyperkahler
2-forms and, together with the scale transformations of R generated by the dilatation
gauge field b,, gives a homothetic H* ~ Sp(1) x R" action on H". One can verify that
H* acts on H" by the quaternionic scalar multiplication from the right. Breaking the
SU(2) gauge invariance and fixing the scale takes us from the N = 2 conformal super-
gravity coupled to the scalar and vector multiplets to the corresponding N = 2 Poincaré
supergravity-matter system. Geometrically, in the scalar multiplet sector, this is equiva-
lent to taking the H* quotient of H" \ {0} which yields the quaternionic projective space
HP"—!, its non-compact dual HH"~! or their semi-Riemannian analogues, depending on

the signature of the metric <-,->. The projection map H" \ {0} T, mpr-1 provides a
geometric picture of how one gets an N = 2 Poincaré supergravity coupled to matter out
of the N = 2 superconformal Lagrangian of [5].

One may ask the following question: Can (H", <-,->) be replaced by some other non-
flat manifold (X, d)? In other words, can one modify the superconformal tensor calculus
and construct an N = 2 conformal supergravity coupled to (0, 3) hypermultiplets such that
the scalar fields A are local coordinates on some curved (pseudo-)Riemannian manifold
X7 If so, then what is the geometry of X allowed in such couplings? Or is the flat space
H" the only possibility?

It is easy to see that the answer to the last question is negative . There are other
manifolds X which are allowed. In order to describe the geometry of X we will show

how the fiberation H" \ {0} E, mpr— generalizes in the case of other quaternionic
Kéahler manifolds. We will use some recent results of Swann [11,14]. He proved that
over any (pseudo-)quaternionic Kéhler manifold M of dimension 4k there exists a hy-



perkdhler manifold U(M) of dimension 4(k + 1) which admits a special homothetic H*
action with Sp(1) C H* acting by isometries rotating the hyperkéhler structure. This
strongly suggest a possible general model for our X.

The paper is organized as follows: In Section 2 we briefly review the notation and
formalism of de Wit et al. [5]. In Section 3 we describe the quaternionic geometry of
the hypermultiplet matter couplings in the N = 2 conformal and Poincaré supergravity
theories which are constructed as quaternionic Kahler quotient. In Section 4 we give a
global description of all hyperkahler manifolds which allow for invariant couplings to the
N = 2 conformal supergravity and can be derived in the framework of [5]. We discuss the
quaternionic join of two quaternionic Kahler manifolds and close with some concluding
remarks.

2. N=2 Supergravity-Matter Couplings

We only very briefly review the formalism of de Wit et al. [5] for the N = 2 conformal
supergravity coupled to an arbitrary number of scalar and vector multiplets. We use some
of the results presented in our previous work [6]. We refer the interested reader to the
original papers.

Using the superconformal tensor calculus one can couple the Weyl multiplet

{ eZ7 ;iu bu: A,UJ Vﬁga T;Za Xi7 D } (21)
to m Yang-Mills multiplets of some Lie group G
{ X5 9, W, Vi } (2.2)
and 2r hypermultiplets
{ A7, €71, (2.3)
where we have introduced the following indices:
a=1,..72r — “matter” representation index of some Lie group GG
i, =1,2 — the chiral SU(2) index
I,J=1,....m — (G-group index in the adjoint representation
w;a,b=1,2,3,4 — spacetime indices (curved and flat)on E.

In the Weyl multiplet e, is the vierbein on some 4-dimensional coordinate spacetime
E, 1}, is the gravitino SU(2) doublet, b, is the gauge field for dilatations, A, and V}; are
the gauge fields for chiral U(1) and SU(2) respectively, T,7 is a real SU(2) antisymmetric
tensor, x* is a spinor doublet, and D is a real scalar. In the vector multiplet X' is a
complex scalar, )] is a real spinor doublet W, is a gauge vector field, and Y is a real
SU(2) triplet. In the hypermultiplet, £* is a spinor and A$* are 2r complex scalar fields
subject to the following reality condition

A = eijpaﬂA? def Al (2.4)
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where €/ is the SU(2) invariant antisymmetric tensor and p,g is a skew symmetric matrix.
The matrix p can always be put in the standard form

p= . (2.5)

It follows from (2.4) that A°,, viewed as a 2 X 2r complex matrix, has the following form

I_ D,
A= , (2.6)

—%% B*

where ®_, @ are r-dimensional complex vectors. Hence, the scalar fields A$* are global
coordinates on r-dimensional quaternionic vector space H". In order to make the quater-
nionic structure more explicit we introduce a quaternion-valued scalar vector field as fol-
lows
ud O, + 50T (2.7a)
or
=AY+ AT, a=1,..,r, (2.7b)

where j is another quaternionic unit. In order to construct an invariant coupling of the
hypermultiplets to the Weyl multiplet we introduce the flat (pseudo-)Riemannian metric
on H" with quaternionic signature (p,q). The metric is represented by a diagonal matrix
h

-1, O
h = (hap) = (2:80)
o I,
in the u coordinates or by a diagonal matrix d
h O
d=(d°) = (2.8b)
O h

in the A coordinates. The scalar product associated with it will be denoted by

<uu>%¥ Z hag(u Z 3 dfArAL A A> (2.9)

a,f=1 a,f=1i=1,2

where (u®)* is the quaternionic conjugation. (H*, d) is now a flat (pseudo-)hyper- kahler
manifold with the symplectic 2-forms given by the imaginary part of the tensor product
2>, (du®)* ® du®. Both A and u are maps from the coordinate 4-manifold E into the
vector space H".



We will further require that the scalar fields transform under gauge transformations
of some Lie group K C Sp(p, q) of hyperkahler isometries of the metric <-,->. Infinitesi-

mally, we have
dimH 2r

NAF =g ) Y NTHA! (2.10a)
I=1 a=1

or
dimH r

hu®=g Z Z )\’Tlaﬂuﬂ, (2.100)

I=1 a=1

where g is a coupling constant and A = (A, ..., Adsimx ) € €are coordinates on the Lie algebra
of K. Both T, and T, are antihermitian generators taking values in the Lie algebra of K.
They describe the same action of K in two different coordinate systems. T, is a complex
antihermitian 2r X 2r matrix in the Lie algebra of K where K is viewed as a subgroup
of USp(2p,2q). T, is an antihermitian r X r quaternionic matrix taking values in the Lie
algebra of K viewed as a subalgebra of sp(p, q).

For simplicity we are going to assume that the gauge group G of m Yang-Mills multi-
plets is a product Gy x K. We shall assume that the scalar fields do not transform under
Gy, i.e., they do not couple to the vector multiplets of the group Gy. Furthermore, we
will include the kinetic term in the Lagrangian for the gauge group G only. All the vector
multiplet fields associated with the group K, as a consequence, will be auxiliary and will
decouple algebraically from the theory. We will also omit the kinetic terms for the gauge
fields associated with the superconformal transformations. (Such a Lagrangian would be
quadratic in second derivatives of the metric, i.e., we would get a theory which classically
has indefinite energy and quantum mechanically is not unitary.) As a consequence of
this, some of the superconformal gauge fields will decouple algebraically to give an N = 2
Poincaré supergravity coupled to matter.

First let us begin with a Lagrangian £ which is invariant under the whole supercon-
formal group. We have
L=Lse+ Lqg,- (2.11)

Here L;. describes the coupling of the 2r hypermultiplets to the Weyl multiplet and the
vector multiplets of the group K. L, is the Lagrangian describing the coupling of the
vector multiplets of the group Gy to the Weyl multiplet. There has to be at least one
vector multiplet with the kinetic term in the Lagrangian as it must provide the spin one
field for the gravitational multiplet of the N = 2 Poincaré supergravity. Let us write the
part of the Lagrangian L. which is relevant to our discussion of the geometry of manifold
X parameterized by the scalar fields A$.

) 1 ) .
e 'L, =—g"d,D,AID, A + §DdaﬂAgAg +gY"d P Afer T AT, (2.12a)
where

1 , -
V] AY — gWiTG AL

DuAf = 0,A7 + 5V,
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g"" is a (pseudo-)Riemannian metric on the spacetime F, and Vﬁj = ij = —Vmi.

One can rewrite the above Lagrangian using the quaternionic notation. First let us
notice that V), is an su(2) Lie algebra valued matrix (it is an antihermitian traceless
2 x 2 complex matrix) and under standard Lie algebra homomorphism 7 : su(2) — sp(1)
we can identify the matrix V),; with a purely imaginary quaternion V), (which is exactly

the Lie algebra of Sp(1)). The chiral SU(2) acts on the fields A by 6y A¥ = AgAJO-‘. In
the language of the quaternionic vector u, this action is given by the quaternionic scalar
multiplication from the right by the group Sp(1) of unit quaternions.

Similarly, the field Y7 is just a 2 x 2 complex symmetric matrix where Y = Y1 is
complex and Y}, is imaginary. Hence, we can introduce a purely imaginary quaternionic
vector Y’ ~ (Y, + jY/}). Now we can rewrite eq. (2.12.a) in terms of u,V, and Y as

e 1L, = —2¢"" <Opu+uV, — ngﬁT,u , Oyu+uV, —gW,T,u>

+D<u,u> +gY'<u,T,u> +g <u, T,u>Y". (2.12b)

Noticed that we have used the fact that < u,T,u >*= — < u,T,u > is a purely
imaginary quaternion since T, is antihermitian with respect to the metric <-,->. The
Lagrangian (2.12.b), together with the remaining terms given by (2.11), is invariant under
the full group of the N = 2 superconformal transformations. However, all the fields of the
Weyl multiplet except for the graviton and the gravitino are auxiliary and they decouple
algebraically.

The same is true of the Yang-Mills vector multiplets of the group K as we have not
introduced the kinetic term for them. Their equations of motion are algebraic, too, and
can be eliminated from the action.

We have a choice: One could first eliminate all the algebraic fields of the Weyl mul-
tiplet, fixing the superconformal gauges for chiral SU(2) x U(1), conformal boost, and
dilatations. As demonstrated in [5], this leads to the N = 2 Poincaré supergravity the-
ory coupled to vector and scalar multiplets with scalar fields parameterizing the (pseudo-
)quaternionic Kéhler manifold Sp(q, p)/Sp(q,p—1) x Sp(1). After that one could eliminate
all the auxiliary vector multiplets of the group K which, according to [6], amounts to tak-
ing the quaternionic Kahler quotient of Galicki and Lawson [7,8]. Such a quotient yields
a new (pseudo-)quaternionic Kéhler manifold (often with singularities) and a new chiral
matter coupling in the N = 2 supergravity theory.

However, we could first get rid of the auxiliary fields of the vector multiplets of the
group K and only after that eliminate the non-physical fields of the Weyl multiplet. It is
clear that in both cases we should obtain the same theory. After all, it does not matter
in which order we are solving a set of algebraic equations of motion. In fact, as we shall
see in the next chapter, the whole problem can be formulated rigorously in terms of the
geometry of the associated quaternionic bundle introduced by Swann 11,14].

7



3. 0-Models, Quaternionic Geometry, and Quotients

In this chapter we shall describe some o-model geometries associated with the La-
grangian (2.12.b). For simplicity, let us choose the Euclidean signature on H" ((q,p) =
(0,7)). We begin by examining the geometry of the process of eliminating nonpropagating
fields of the Weyl multiplet.

As explained in [5], fixing the scale transformations, together with the field equation
for the auxiliary field D, gives the following constraint on u

v(u) Lenu>= ~1/kK>. (3.1)

The level set v~1(—1/k2) describes a (4r — 1)-dimensional sphere S4"~! in H". The chiral
SU(2) ~ Sp(1) acts on this sphere and the quotient »~'(—1/x2)/Sp(1), which corresponds
to fixing of the chiral SU(2) gauge freedom, is the quaternionic projective space HP™ 1.
The map v~1(—1/k2) - HP"~! is the standard quaternionic Hopf fiberation. Together
with the scale transformations Sp(1) gives a free homothetic action of H* on H" \ {0} and
the quaternionic projective space is just the quotient H" \ {0}/H*. Moreover, the met-
ric calculated from the Lagrangian (2.12.b) is precisely the Fubini-Study Sp(r) invariant
quaternionic Kahler metric. To see this, one has to solve for the auxiliary chiral Sp(1)
field V,.

V, = k’Im <u,d,u> (3.2)

and our Lagrangian becomes

e_lﬁf = —2gH" (<8Mu , Oyu> +K2<u, Jpu><dyu,u> +WliVl,<u, T,u> —

<u,T,u>V,W, + ngﬁ(< u,0,T,u> — <d,u, T,u>) + g2WlﬁW,f <T,u, 'JI‘,u>). (3.3)

The first two terms of (2.15) describe the Fubini-Study metric on the quaternionic pro-
jective space HP"~! in homogeneous coordinates u. The remaining terms describe the
gauging of the group K C Sp(r) of the isometries of HP"~1. The Lagrangian £ is an
N = 2 Poincaré supergravity-matter system with scalar fields coupled to the gauge fields
of K. At this point £ is still invariant under the local gauge transformations of K.
However, the fields W, as well as their supersymmetric partners, are all auxiliary and can
be eliminated. We have two algebraic equations of motions for W} and Y’ respectively:

>

gW,; <T,u, Thu>=<u,d,T,u>, I=1,..,dimkK, (3.4)

fw) ¥cu T,u>=0, I=1,.. dimK. (3.5)

In both of the above equations the fields u are understood to be the homogeneous coor-
dinates on HP"~!. The 3dimK equations of (3.5) are the quaternionic Kiihler moment
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map equations of the action of K on the quaternionic projective space [6]. They define

_1(0) C HP™—! a submanifold in the projective space. The orbit space M= F~H0)/K
carries a natural quaternlonlc Kahler metric at all regular points. Depending on the action
of K on HP"—! M is often singular. The metric on M can be calculated by eliminating
all the auxﬂlary fields of the vector multiplets of K. We get

1
gﬁg = —2g"" (< O,u,0,u> +x°<u,d,u><d,u,u> +g2leWyJ <T,u,T,u >), (3.6)

where u and W are subject to the conditions (3.4-5). We can illustrate the process of
eliminating the auxiliary fields of the Weyl multiplet and then the vector multiplets of K
by the following diagram

Sp(1) xRt | (3.7)

Lr i £y

The vertical arrow represents the fixing of the superconformal gauge transformations and
the horizontal arrow represents the process of eliminating the vector multiplets associated
with K, or, in the language of the quaternionic Kiahler quotients, the reduction of HP"~1!
by its isometry subgroup K.

As we already mentioned, we could start with the Lagrangian £, and eliminate the
auxiliary fields of the vector multiplets of the group K first. This would yield the same
equations (3.4-5), giving W] in terms of u and putting quadratic constraints on u. But
now we must think of u as a linear coordinate on the quaternionic vector space H" (and not
homogeneous quaternionic coordinates on the projective space as before). Observe that
f(u) =<u, T,u>€ £ ®R3 is now just the momentum map equation of Hitchin et al. The
equation (3.4) describes a subset of H" given by the inverse image of the zero momentum.
The group K is the isotropy group of the point 0e f710) C H". Let us assume that this

action is free on f~1(0) C H" \ {0}. Then the quotient X ef f~1(0)/K is a hyperkiihler
manifold [10]. Noticed that in the hyperkéhler quotient construction we have freedom to
take any K invariant element & of the Lie co-algebra £* and consider the &-momentum
level set f~1(¢). However, in this case, only the zero level set is Sp(1) invariant. As a
consequence, X is not only hyperkéhler. It also has an isometric action of Sp(1) (or chiral
SU(2)) rotating the hyperkéhler structure. This action extends to a homothetic H* action.
Hence, we obtain a hypermultiplet 6-model coupling of the scalar fields parameterizing X
to the N = 2 Weyl multiplet. The Lagrangian L; is invariant under the full group of the
N = 2 superconformal transformations. But as the superconformal gauge fields decouple,
we can eliminate them getting, as before, Eg . Thus, we have the following commutative
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diagram
,CU — E&

Sp(l) x R | 1 SO@3) xRt (3.8)

Lre - £y

Classically, all of the above Lagrangians describe the same physical interactions. In terms
of the differential geometry of the various target spaces we can rewrite (3.8) as

{0} 5 @ X=uM)

iy | H*/Z, (3.9)
HP 1 R M

Here we introduced a special notation for X which will be defined later. The vertical arrows
represent certain principal fiberations with fibers H* and H* /Zs. The horizontal arrows
describe the hyperkahler reduction of H" \ {0} by the group K (with respect to the zero
momentum level set) and the quaternionic Kahler reduction of HP"~! by K respectively.
Locally, M is just a quotient of X by the action of H*. Globally, we have the fiberation
X — M which is a special example of the associated quaternionic bundle introduced by
Swann [11,14]. Swann shows that for any (pseudo-)quaternionic Kdhler manifold M there
exists a quaternionic associated line bundle U (M) = F X gp(k).sp(1) (H* /Z2) where F is the

frame bundle of M, dimM = 4k, and Sp(k)-Sp(1) def Sp(k)xz,Sp(1). The bundle U (M) is
a principal fiber bundle with fiber H* /Z,. It admits a (pseudo-)hyperkéhler metric which
is Riemannian when M has positive scalar curvature. It also admits a quaternionic Kahler
metric in the same quaternionic class. Both of the metrics can be constructed explicitly.
Swann also shows that the quaternionic Kahler quotient of Galicki and Lawson is just the
hyperkahler quotient of Hitchin et al. in the associated bundle (and with respect to the
zero momentum level). In other words the diagram

X=um) L X=uM

) l (3.10)
M &, M

commutes for any quaternionic Kahler manifold M and for any quaternionic Kahler quo-
tient M.

4. Hyperkahler Geometry in the Associated Bundle

As already mentioned in the introduction, not all the quaternionic Kahler o-models
allowed as couplings in the N = 2 Poincaré supergravity theory can be constructed from de
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Wit et al.’s Lagrangian. All the couplings in their formalism are of the form Ef; as in the
diagram (3.8). Geometrically, all such couplings are derived as some quaternionic Kéhler
quotients of the quaternionic projective space. This is the case because the Lagrangian £,
starts with the flat quaternionic vector space X = H" as the model for the hypermultiplet
coupling to the Weyl multiplet and vector multiplets. Swann’s theory of the quaternionic
associated bundles over quaternionic Kahler manifolds and the commutativity of the dia-
gram (3.10) strongly suggest that one could modify the superconformal tensor calculus to
construct more general Lagrangians then that given by (2.12b). Clearly, in such a theory
the fields should parameterize some (pseudo-)hyperkédhler manifold (X, d) with non-flat
metric d =< -,->. The manifold X should be (at least locally) the associated bundle of
some quaternionic Kahler manifold M describing the o-model target space of the scalar
couplings in the underlying N = 2 Poincare supergravity coupled to matter. In fact, it is
rather easy to construct the bosonic part of such a general Lagrangian. We also believe
one can find the full N = 2 superconformally symmetric Lagrangian with hypermultiplets
parameterizing some (pseudo-)hyperkihler manifold X and vector multiplets with gauge
fields W, given by the hyperkihler Killing vectors on X. We are not going to derive it
here. Instead let us describe the geometry of X. For simplicity we again assume the
Riemannian signature. The generalization to the semi-Riemannian category is obvious.

First, the manifold (X,d) must be hyperkéhler. That means that one has three
parallel complex structures J* such that

Jio JI = 81 4 Ik gk 4 4 k=1,2,3. (4.1)

If the metric d is chosen to be Hermitian with respect to all three complex structures then
we can define a trivial R® bundle of symplectic 2-forms with a basis

Wi(Z,Y) ¥ a1'z2,Y): Z,YeTX, i=1,2,3 (4.2)
We further require that X has G = K x Sp(1) C Isom(X) as a subgroup of isometries.
The group K acts by hyperkdher isometries, i.e.,
Low=0, i=1,23; Vek, (4.3)
where L, is the Lie derivative and V is any Killing vector field for the action of K.

On the other hand, Sp(1) acts on X by isometries rotating the hyperkéhler 2-forms.
If we choose {{'}i=123 to be a basis for the vector fields of the local Sp(1) action with
the Lie bracket [£¢,£7] = 2€97¢F then we require that

Leiw! = 2eTFWk, (4.4)
This is not quite enough to describe the geometry of X we need. For instance, the

moduli space M¥ of charge k monopoles with fixed center is known to be a smooth (4k—4)-
dimensional hyperkahler manifold with SO(3) isometric action rotating the hyperkéhler
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structure as in (4.4) [15]. But MP¥ turns out not to be an associated bundle of any
quaternionic Kiahler manifold (even locally) and, therefore, not the right model for our X.
Another well-known example of a hyperkdhler manifold with an isometric SO(3) action
rotating the hyperkahler structure is the 4k-dimensional analogue of the Taub-NUT metric
[12,16]. However, just as in the case of M’g, it is not a correct model for the target space
X of our o-model coupling. We need another restriction on the hyperkahler geometry of
X. As we noted in [17], (4.4) implies that

¢ w? = —dvé 4 ddY + kyk, (4.5)
where v is an Sp(1) invariant function on X, d®¥ is the traceless symmetric part of the
decomposition sp(1) ® sp(1) = I® Sym2(R3) @ sp(1), and dn* = w*. Suppose that Sp(1)
(or SO(3)) acts freely on v~!(c). If not, we can always consider only the part of »~1(c) on
which the actions is free. One can show that, although v exists globally for any Sp(1) (or
SO(3)) action rotating the hyperkéhler structure, there are obstructions for the quotient
space M = v~1(c)/Sp(1) to carry a quaternionic Kéhler structure [17]. These obstructions
are described by ® and n*. The quotient M = v=1(c)/Sp(1) is quaternionic Kéhler if and
only if ®" is constant on the level sets v~ (c) and the one-forms n* annihilate horizontal
planes for the Riemannian submersion v~!(c) — M [17].

The model example of the above Sp(1) quotient is given by the r-dimensional quater-
nionic vector space H". Let u € H" and let u* be its quaternionic conjugate. We define
the flat metric g = Re{du* ® du} and the hyperkéhler structure w = 1Im{du* ® du} =

Z?:l w®e;, where {e;}i=123 = {i,J, k} is the standard basis for the unit quaternions. If
we introduce real coordinates u = t + x’e; then

r
. 1
w' = Z (dta A dx?, — Ee”kda:fx A dm’;) (4.6)

a=1

Let us consider the action of Sp(1) on H" by the scalar multiplication from the right,

H >u->u), A€ Sp(1). (4.7)

It is an isometric action rotating the quaternionic structure as in (4.5), that is w

AwA. The action is free on H" \ {0}. Locally, it is generated by £ = ¢le; = Im(u*t-2)

a _ 8 ;. :
where 5. = 5 + €;5.7. In real coordinates we have

4 r 0 .0 1 ... . 0
i_ ot _ _igk,.g
13 321 (ta dai x?, o, 5€ Ta 8:6’;) (4.8)

With this choice of normalization [¢%,¢7] = 2€¥k¢k. Easy calculation shows that
v =2u*u, ¢ =0 and 5 = Im(u**du). In this case M = v='(c)/Sp(1) ~ HP"~! and the
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quotient metric is the standard one. The Sp(1) action extends to a homothetic H* action
free on H" \ {0} and M = v~1(c)/Sp(1) ~ H" \ {0}/H*.

The condition (4.4) and vanishing of the obstructions in (4.5) together imply that
Sp(1) extends to a homothetic action of H* ~ SU(2) x R* (or H*/Z3) on X. This is
necessary for the consistent coupling of the dilatation gauge fields in our sigma model
Lagrangian £, (X) based on X.

The geometry of X described here is very restrictive. In fact, locally, the above
conditions imply that X is the associated bundle of the quotient M = v~1(c)/Sp(1). Also,
X cannot be a complete hyperkahler manifold unless it is the flat space. It always admits
a function v which is called the hyperkihler potential. If 8,, 9, denote the 9, d-operators
in the complex coordinates with respect to J then

w’ =2j0,0,v (4.9)

where J is any complex structure on the 2-sphere. The function v is then an ordinary
Kahler potential but with respect to any complex structure J on X.

There are many examples of hyperkahler manifolds with such properties. The quater-
nionic vector space H" is the simplest one. Other include the moduli spaces M’g(R4) of
based charge k instantons on R* (see, for example, [18]) and the adjoint nilpotent orbits
O of complex Lie groups with the hyperkahler structure introduced by Kronheimer [19].
We also have the associated bundles of the homogeneous quaternionic Kahler manifolds:
the Wolf spaces [20] and the Alekseevskii spaces [21]. These were constructed explicitly
by Swann [11]. Locally, X/H* ~ M is a quaternionic Kiahler manifold and it describes a
o-model target space of the Poincaré supergravity-matter system £ (M).

Notice that, if X; and X, are both hyperkahler manifolds with the properties de-
scribed above, then the product X; x X5 also has the same properties. In other words,
X1 X X5 can be a model for the target space of the hypermultiplet coupling in N = 2
conformal supergravity. Clearly,

LO’(XI X X2) = EO'(X]_) + LO—(XQ) (410)

The equation (4.10) illustrates a very simple property of the N = 2 conformal super-
gravity-matter systems. If one has two different N = 2 conformal supergravity-matter
Lagrangians with hypermultiplets A$ and B{* parameterizing two manifolds X; and X,
respectively then the sum of these two Lagrangians is also invariant under the group of the
N = 2 superconformal transformations. In this sense the N = 2 conformal supergravity
is “linear” in hypermultiplet couplings. This is a familiar feature of the o-models with
global supersymmetry.

However, the same is not true for the N = 2 Poincaré supergravity matter-systems.
If we consider two different models £F (M;) and £LF (M,) with the target spaces based on
quaternionic Kihler manifolds M; and M, then £F (M) + L (M>) is no longer invariant.
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It is easy to understand this phenomenon in the geometric language. The product M; x My
is not a quaternionic Kahler manifold.

The eq. (4.10) suggests a very simple construction of new N = 2 Poincaré super-
gravity-matter couplings. Although we cannot just add £ (M;) and LZ(M,) we can
construct a new Lagrangian £F (7 (M1, M5)) as follows. Let X; = U(M1) and Xy = U(M5)
be the associated bundles of M; and M5 respectively. Then the product X; x X5 is a
hyperkahler manifold with the Sp(1) action satisfying all our conditions. Hence, there is
an N = 2 conformal supergravity-matter Lagrangian modeled on X; x X5, and it is given
by eq. (4.7). Eliminating the auxiliary fields of the Weyl multiplet we get

ﬁo'(Xl X X2)

! (4.11)
LE ~ LE(T (M, My))

a new N = 2 Poincaré supergravity model with scalar fields parameterizing some quater-
nionic Kéahler manifold M. The geometry of M is determined by X; and X, (or M;
and Ms). By construction, the product X; x X5 is the associated bundle of M. Swann
calls M ~ J (M, Ms) the quaternionic join of My and My [14]. Notice that if dimM; =
4k, dimMs = 4r then dimJ (M7, My) = 4k + 4r + 4. This very elegant operation allows
for construction of new couplings out of old ones. For example, let M** be a quaternionic
Kihler manifold of positive scalar curvature and let X = U(M). We introduce X x H*
equipped with the product metric of signature (4k + 4,4). The product X x H* has a
homothetic H* action and locally M*+% ~ (X x H*)/H* is a quaternionic Kéhler mani-
fold of negative scalar curvature. This way one obtains new o-model couplings with very
interesting target space geometries. M is usually not complete.

Although we do not derive the full N = 2 conformal supergravity-matter Lagrangian
L,(X) with hypermultiplets parameterizing some hyperkahler manifold X = U(M), where
X has all the properties described in this chapter, it is rather evident that such a La-
grangian can be indeed constructed. In fact, it should be possible to express all the inter-
actions between the Weyl multiplet and the hypermultiplets in terms of the hyperkahler
potential function » on X. Then the Lagrangian (2.11) would depend on just two func-
tions F and v (both subject to some restrictions) describing the local interactions for the
vector multiplets and the hypermultiplets respectively. We will address this problem in
our future work.
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