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Multi-centre metrics with
negative cosmological constant

KRzYSzTOF (GALICKI

ABSTRACT: We describe a hyperkéhler quotient construction of the multi-Taub-NUT
gravitational instantons of Gibbons and Hawking and show how it relates to the quotient con-
struction of the multi-center asymptotically locally Euclidean (ALE) gravitational instanton.
Then we use the quaternionic quotient method to obtain a family of Einstein metrics with neg-
ative scalar curvature and self-dual Weyl tensor and with possible orbifold type singularities.
Our metrics give the multi-center Taub-NUT metrics in the limit of the scalar curvature going
to zero.

1. Introduction

A lot of progress has recently been made in our understanding of 4-manifolds with
SU(2)-holonomy. This condition implies that such metrics are self-dual and Ricci-flat.
For that reason they are sometimes called gravitational instantons. The first example was
constructed by Eguchi and Hanson [EH]. They produced an SU(2)-holonomy metric on
the cotangent bundle of the complex projective line. Later Gibbons and Hawking em-
ployed an ansatz on the form of the metric and constructed multi-center generalizations
of the Eguchi-Hanson metric [GH]. Their ansatz has a very simple and elegant geometric
interpretation: It is equivalent to the requirement of the existence of, at least one, triholo-
morphic Killing vector [H1]. Then the symmetry induced by this Killing vector can be
used to define three momentum mappings associated with the three Kahler forms. The
momentum mappings define a local fiberation over R3

p: M — R3,

i.e., the manifold M has a circle bundle structure. It is then a simple consequence of the
hyperkahler geometry that the metric can be cast in the following form

ds®> = Vdx -dx + V! (dr — A)? (1.1)
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where A is a connection 1-form, 7 is a local coordinate on the fiber, dx - dx is the standard
flat metric on R3, and V is a function on R3. Moreover, the pair (A4,V) has to be a
monopole solution, i.e., *dV = dA. In other words, V has to satisfy the Laplace equation
on R®. Any such solution gives (locally) a metric with SU(2)-holonomy. If one requires
that the metrics be complete there are two different cases. When

(1.2)

we get the k-center multi-Taub-NUT Asymptotically Locally Flat (ALF) (3k —5)-parame-
ter family (k > 1) of hyperkéhler metrics and when

k
m
V()= 1.3
(%) ; =] (1.3)
we get the k-center multi-Eguchi-Hanson Asymptotically Locally Euclidean (ALE) family
with (3k — 6) parameters. In both cases the manifold is diffeomorphic to the minimal
resolution of the singularity in C2/Zj,. Putting k = 1 in (1.2) and (1.3) corresponds to the
Taub-NUT metric and the flat R* metric respectively.

At the same time, Hitchin constructed the multi-Eguchi-Hanson family using different
methods [H2]. He showed that the minimal resolution of C?/T', where I' = Zj, admits
a family of Kahler and Ricci flat metrics and constructed them explicitly using twistor
techniques. He also conjectured that such metrics exist for other discrete subgroup of
SU(2). Recently, Kronheimer constructed them for all I'’s using hyperkihler quotients
and showed that these are all the hyperkéhler ALE spaces [K1, K2].

For I' = Zj, every ALE gravitational instanton has its ALF analogue and locally the
connection between the two is provided by the Gibbons-Hawking ansatz. It is not known,
however, if all ALE spaces constructed by Kronheimer have their ALF analogues. For
I' = Zj we shall describe a relation between the hyperkahler quotient construction in both
cases. We demonstrate how an ALF multi-Taub-NUT metric can be obtained from its
ALE multi-Eguchi-Hanson partner.

In the main part of this article we show that there exist families of self-dual Einstein
metrics of negative scalar curvature which are quaternionic analogues of the multi-Taub-
NUT metrics. In general they may have orbifold-type singularities and they give the
multi-Taub-NUT families when we take the limit of the scalar curvature going to zero.

Our paper is organized as follows. In Chapter 2 we review and compare the hy-
perkahler and the quaternionic Kahler quotient constructions. In Chapter 3 we describe
the quotient construction of the multi-Taub-NUT family. We also produce some new
4n-dimensional hyperkahler metrics which are hyperkahler deformations of higher dimen-
sional analogue of the Taub-NUT metric. Finally, in Chapter 3 we give the construction of
our new metrics and show that they produce the Taub-NUT family as the scalar curvature
going to zero limit.



2. Hyperkahler versus quaternionic quotient

We begin with a review of the hyperkahler quotient construction. Let us recall that a
hyperkahler manifold is a Riemannian manifold M with three complex structures I, J, K €
End(TM),

P=J=K=—-1, IJ=-JI=K, (2.1)

that are covariantly constant and a Riemannian metric g that is Hermitian with respect to
all three complex structures. Consequently, M is a Kahler manifold with respect to these
three complex structures. Hence, we can define three closed non-degenerate symplectic
2-forms on M

Ww'(X,Y)=g(A'X,Y); X,YeT(TM); A'=1A>=J A>=K. (2.2)

Let G be a subgroup of the isometry group of M such that it commutes with all three com-
plex structures. We shall call such isometries triholomorphic. Then G is also a symplectic
action for all three symplectic forms which means that

Lowi=0 Vi (2.3)

where V is any vector field generated by G. Suppose there exists an equivariant momentum
mapping for each of the symplectic structures

pt: M — g (2.4)
defined as . .
<d,uz, V> = jyw" (2.5)

where i, denotes contraction with V' and g* is the Lie co-algebra of G. Equivalently, we
can consider a mapping
p: M — g* R3. (2.6)

Let us introduce a “f-momentum level”, p=1(¢), where ¢ € g* ® R? is a G-invariant
element. The following result is due to Hitchin et al. [HKLR]:

Theorem 2.7 If M = p~t(€)/G is a manifold then its induced metric is hyperkahler.

In fact both the metric and the hyperkahler structure are given by the pullbacks of
the projection and inclusion maps.

M&— p i) M. (2.8)

In particular, if Misa 4-manifold, it is a hyperkahler gravitational instanton and this is
the construction used by Kronheimer to obtain all gravitational instantons conjectured by
Hitchin [K1].



In the quaternionic Kahler geometry there exist a similar construction which we shall
briefly describe now [G1, GL]. Let M be a 4n dimensional manifold with holonomy group
contained in Sp(n)-Sp(1). Then there exists a real rank 3 subbundle V of End(TM).
Locally, at each x € M, V has a basis {1, J, K} satisfying

I’P=J>=—-1, 1J=-JI=K. (2.9)
The metric g on M is compatible with the bundle V in the sense that for each A €V, ¢

is Hermitian with respect to A, i.e., g(AX, AY) = ¢(X,Y) for all X, Y € T, M. It is clear
that a compatible metric always exist. One can use the metric to define an isomorphism
End(TM) =2 AT*M @ AT*M
under which V is isometrically embedded in A2T*M. Explicitly, any element A € V, is
mapped into w4 by
wa(X,Y)=9g(AX)Y), X, Y eT,M.

Let {w1,ws, w3} be a local orthogonal frame of V C A>T*M. Let us define

Q=wi; Awi +wos Aws + w3 A ws. (2.10)
This €2 is a globally defined, non-degenerate 4-form on M and it is parallel. It is usually
called the fundamental 4-form or the quaternionic structure on M as its parallelism de-
termines the reduction of the structure group on M. The condition V2 = 0 can be used
to define quaternionic Kahler geometry in dimension bigger than 4. It is equivalent to the

requirement that the holonomy group be a subgroup of Sp(n)-Sp(1). In dimension 4 we
shall say that M is quaternionic Kahler if it is self-dual and Einstein.

Let G be a group acting on M by isometries which preserve the fundamental 4-form.
Let V be any Killing vector field of this action. Define

0, = Z(ivwi) ® w;. (2.11)

Clearly ©, remains invariant under local change of frame field.

Theorem 2.12 Assume that the scalar curvature of M is not zero. Then to each V' there
corresponds a unique section fy € T'(V) such that

Vi =0, . (2.13)

This unique section can be used to define a map

p: M—g" V. (2.14)
whose value at m € M is the homomorphism V' — f,,(m). Because of the uniqueness
of the section f,, the map V' — f, transforms naturally under G' and consequently our
momentum mapping p is always G-equivariant. Again, let us introduce a “zero momentum
level set”

p~r(0)={m e M: p(m)=0}. (2.15)
One can show [GL] that



Theorem 2.16 If M = 1~ 1(0)/G is a manifold then it its induced metric is quaternionic
Kahler.

In particular if M is a 4-manifold it is necessarily self-dual and Einstein, i.e., a
gravitational instanton.

3. Quotient construction of the multi-Taub-NUT metrics

Suppose that some smooth hyperkahler manifold M, was obtained as a quotient of
the flat space H® by an action of a subgroup G of Sp(k) where Sp(k) acts linearly on
u € H* from the left. Here we think of Sp(k) as the group of quaternionic transformations
preserving the canonical quaternionic Hermitian product on H*. Let £ € g* ® R? be a
G-invariant element with respect to which the reduction is carried out. We shall write

M, = H* J)G. (3.1)

We can then take HFt! = H* x H and introduce a non-compact action of G=GxR
defined as follows

G=GxR>(Aa): (4a) (u,w)= (A u,w+ Aa), (w,w) e H* xH (3.2)

provided . .
Ae" =e'*A for all A €G. (3.3)

It is easy to see that the above extension makes G act freely and properly on HFT1, It is
also the action by triholomorphic isometries. Choose any 0 € R ® ]Ri The hyperkahler
quotient with respect to (£, o) gives a smooth hyperkéhler manifold Mg n,0)- We write

Me ) = B4 )G, (3.4)

One can easily verify that ﬂ(& A,0) 18 diffeomorphic to Mg. However, they need not be

isometric as Riemannian manifolds. The action of R, when restricted to u € HF, is just
a circle action. Now, if this action can be generated by a one parameter subgroup of G,
then, in fact, M is isometric to M , ). If not, the two spaces are different.

Now let My = M¢(Zy,) be the ALE space given explicitly by the reduction of H* by
G(Zy) = U(1)*=* Cc U(k) [K1, K2]. Then M , ) is the corresponding ALF space (the
multi-Taub-NUT metrics).

Before describing this construction in more detail we make the following observation.
Let My, M5 be two hyperkahler manifolds. Let K act on M; by triholomorphic isometries

and let H act on M = M; x My by triholomorphic isometries. Moreover, let the actions
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of K and H on M; commute, i.e., G = K x H acts on M and it is a hyperkahler action.
We have the following momentum mappings
Myt Ml — E*a
pe: M — B, (3.5)
p: M — g

Let &, € 8, & e h*, E =6 D& € b D EF = g* be the respective co-algebras’ elements
defining the three momentum levels. Now it is easy to see that

Lemma 3.6 If all three quotients are smooth hyperkahler manifolds then the following
spaces are isomorphic

MG = ((M1 ///K) x M2) JH = ((M1 X Mz) ///H) /K.

Let us consider some examples. First, we take the 4k-dimensional generalization of
the Taub-NUT metric. It is given by the hyperkihler quotient of H**! by the action of
the group of translations where for a € R

a- (u,w) = (e, w + Aa), (u,w) € H* x H, (3.7)
where A is any non-zero real constant. Choose any 0 € R ® R3 and take the quotient
Ms,0) = (H'*,ds?) /R = (B, dsT.), (3.8)

where ds? is the standard flat metric. M, (1,0) 18 homeomorphic to HF and, as a consequence
of the Theorem 2.7, its induced metric is hyperkihlerian. When k = 1, ds2, is the Taub-
NUT metric and when k£ > 1 it is its higher dimensional generalization introduced by Rocek
[R]. Notice that M(, ,y has U(k) as the group of hyperkéhler isometries. Furthermore,
notice that one can deform M(, ,) through hyperkahler deformations just by taking a
different R-action

aT

a-(u,w) = (e* u,w+a) (3.9)

where T' is any element of the Lie algebra of Sp(k). Let M(, ) denote a hyperkahler
quotient of H¥*1 by the action of (3.9) taken with respect to the o-momentum level.

Proposition 3.10 M, ,) is a smooth hyperkidhler manifold for all (T, o).

Proof. It M, is a smooth manifold then its metric is hyperkahler as a consequence of
Theorem 2.7. It is then enough to show that it is a smooth manifold. The o-momentum
level is given by the following constraints

p o) = {(u,w) e B . u*-Tu+ (w— w*) :a} (3.11)

6



which is clearly a submanifold in H**!. The one-parameter action defined in (3.9) is free
on p~ (o). The action is not compact. We show, however, the existence of a slice. Let

S = {(u, w) € p o) wr+w= 0} ~ HF. (3.12)

Every orbit of R passes through S and if p;, po are any two points on S then they belong
to different orbits and S is transversal to the orbits. Hence, S is a global slice and

po)/R~S. N

Notice that the previous M, ,) corresponds to taking T = i(1/A) T and R* ~ HF

with the standard flat metric corresponds to T = 0. Since e?? can be chosen to act diag-

onally with respect to some unitary quaternionic basis of H* with weights g, (1 < a < k)
M1 ) describes a k-parameter family of hyperkédhler metrics with & commuting triholo-
morphic Killing vectors. As pointed out in [PP], such metrics correspond to solutions of
the generalized Bogomolny equations just as in the 4-dimensional case they correspond to
the solutions of the usual monopole equations.

The group of hyperkéhler isometries of M, ;) depends on the choice of T'. In par-
ticular, any A € Sp(k) such that [A,T] = 0 is a hyperkahler isometry of our manifold.
Again, notice that for T = i(1/A)4, G = U(k) and when k£ = 1 it is well known that
the Taub-NUT metric has only one triholomorphic Killing vector (even though it is U(2)-
symmetric).

Our second example is the Kronheimer’s construction for I' = Zj [K1]. It was orig-
inally introduced by Rocek as an N = 2 supersymmetric sigma model in four dimen-
sions [R]. The quotient can be described as follows. Take H* and consider the action of
G Cc U(k) C Sp(k), G = T¥~1 being the maximal torus subgroup of SU(k). T*~1 acts on
u e HF as

k—1
ps(u) = exp(z 27risATA>u, A=1,.., k-1 (3.13)

A=1

where

1 0 0
-1 1 0
T, = 0 , To= _1 ..... Tp_1=
.. 1
0 0 -1
and s = (s!,...,s¥71) is a coordinate chart on T*~1.

Choose any ¢ € RF-! @ R3, ¢ = (&1, ...,€4) being a purely imaginary quaternionic
(k — 1)-vector. The £&-momentum level set is now given by the following constraints:

p ) ={ueHr: wiT,u=¢* A=1,..,k—1}. (3.14)
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where “x” denotes the quaternionic conjugation. p~!(§) is a T*~!-invariant submanifold
in H*. If one chooses ¢ appropriately then the action of T%~! is free on p~'(¢) and
M¢(Zy) = p~1(€)/T* 1 is a hyperkidhler manifold. The value of ¢ has to be in, what
Kronheimer calls, a “good set” [K1]. Namely, choose any s = (s, ..., s*) and suppose that
s # 0 and

ps(u) =u
or, using the coordinates,
.1
up = e27rzs U1,
] 1
Us 62772(8 s )Ug
_ 27mi(s —s52
Uz = € ( )Ug, (3 15)
27i(sh 1 —sh—2
up—1 = €™ Jug_1,
o k—1
up = e 2mis U

Suppose no two components of u can vanish on p~1(¢) at the same time. Then (3.15)
implies that s = 0 and thus the action is free on the &-level set. One can easily write down
the conditions that the components of £ must satisfy in order to exclude vectors with more
than one vanishing component from the level set. If one considers the Lie algebra of 751
as the Cartan subalgebra of su(k) then we must have

¢¢ | R @ Py) (3.16)
[’]

where P, is a hypersurface describing a wall of the Weyl chamber given by any root 6
[K1].

M¢(Zy) gives a (3k — 6)-parameter family of hyperkdhler metrics on a space that is
diffeomorphic to the minimal resolution of singularity of C?/Zy. Lemma 3.6 can be now
used to observe that the above construction gives a sequence of U(1) quotients

B 29 Mg (Zo) x B2 DY M (Zg) xEE T MY M (z). (3.17)

Finally, we employ the idea described at the beginning of this chapter. Let us intro-
duce T*~1 x R acting on H* x H such that T*~! acts only on H* as in (3.13) and R acts
on HF x H as in (3.7). Choose ¢ as before and any 0 € R® R3. Then (3.6) says that

Mig.)(Zi) = (B, ds) )T x R = {([HF, ds?) J/R} ) T+
= {M¢(Zy) x H} J/R.

This shows that one can view our construction of the family of multi-Taub-NUT spaces
as the quotient construction of Kronheimer for I' = Z;, with a different, non-flat metric,

(3.18)

Mien,0)(Z1) = Mao) [/ T = (HF, ds?,) ) T (3.19)
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But we can also think of ﬁ(&,\’a)(Zk) as the quotient of M¢(Zy) x H by R and it is

clear that, in order for M , ,)(Zx) not to be isometric to M¢(Zy), R has to act on the
latter as a triholomorphic isometry in a nontrivial fashion. This is the reason why a
similar extension will not work for other, non-Abelian, I'’'s when M¢(I") has only discrete
hyperkahler symmetries (no triholomorphic Killing vectors.)

4. Negative scalar curvature case

Before we discuss the multicenter case let us describe a negative scalar curvature
quaternionic Kahler analogue of the 4k-dimensional generalization of the Taub-NUT met-

ric M(; ). Consider the 4(k + 1)-dimensional quaternionic projective ball HHF+! L
P(H'! x H*). Let (wo,w;,u) € P(HY! x H*) be a homogeneous coordinate, i.e.,

* * *
u-u+ww — WyWwo = ——3,
K

(wo, w1,u) ~ (wp,wy,w)v (4.1)

where v € Sp(1) C H* is a unit quaternion v*v = 1. HH**! is homeomorphic to an open
quaternionic (k + 1)-ball B¥*+1(1/k) of radius 1/x. We can put the standard Sp(1, k + 1)-
invariant hyperbolic metric on it

k
d32 =Re (Z du:< & duz —+ dw{ X dw1 — dwa‘ (024 d’LUO>

=t (4.2)

k k
+52Re((z ufduz> ® (Z u;fduj) + widwi @ dwjw, — wydwy @ dewo).
i=1

i=1

We consider a non-compact action on (Bk+1(1/m),ds2) by R where R ~ SO(1,1) C
U(l,k+1) C Sp(1,k + 1) given explicitly by

R x (Bk+1(1 /K), ds2) — (Bk+1(1 /K), ds2)
( e cosh As €% sinh \s I o \ ( wo \
e*sinh As e cosh As | w1

vs(wo, wi,u) = , (4.3)
|

O e u
\ IV
where \, 3 are any two real constants and D any sp(k)-matrix. The action (4.3) is a
quaternionic isometry of the metric ds? and therefore, according to the Theorem (2.12),
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it defines a momentum section u. The zero-section level set p~1(0) C B¥*1(1/k) is given
by following constraints

p=t(0) = {(wo,wl,u) e B*Y(1/k) : p(wo, wi,u) = O}

where
p(wo, wi,u) = B(—wiiwe + witwr) + A(wiwe — wiwy) + u*-Du, (4.4)

and it is clearly an R-invariant submanifold in B**1(1/x).

Let us introduce global “inhomogeneous” coordinates (y,x) € B¥*1(1/k) defined as

1 —1
X = _uwo 9

’f 1 (4.5)
Yy = —wiwg -
K

Then (4.1) yields
1 ~1
wywo = pes [1 — &2 (y*y + x*x) (4.6)
and therefore .
x*x+yty < —
K

as a simple consequence of (4.1). p~!(0) is now described in terms of (y,x) as

w0 = {0 € B0 s X Dx ki 0T ) = @D

The transformation of (y,x) under (4.3) is

. . . . -1

0s(y) = ((e’ﬁs cosh As)y + £~ 1€ sinh As)) ((me“gs sinh As)y + e*#* cosh As) ,
| | _1 (4.8)

0s(x) = e*Px <(ne’ﬂs sinh As)y + e"°* cosh )\s) .

The transformation of y in (4.8) is a special case of the quaternionic analogue of the frac-
tional linear transformations of the complex upper-half plane. If y is the affine coordinate
on the quaternionic unit ball Sp(1,1)/Sp(1)-Sp(1) then we can consider the following
transformation

y — (ay+0b)(cy+d)~! (4.9)

where a, b, c,d € H and the quaternionic 2 x 2-matrix

(Ccl Z) € Sp(1,1).

10



In our case 5 ’
e*PScosh As e*®sinh As
(eiﬁs sinh \s e®* cosh)\s) €U(1,1) C Sp(1,1).

Now we shall demonstrate that the above action is free on B**!(1/k). Consider the
following equation

es(y) = y. (4.10)

It can be written as
((eiﬁs cosh As)y + £~ 1€ sinh )\s)) =y ((mews sinh As)y + e** cosh )\s)

or
sinh As <m_1ei'85 - ﬁyewsy> + cosh As (eiﬂsy - yei'gs> = 0.

If y = z4+wuy, where j is the second quaternionic unit, then the above quaternionic equation
is equivalent to two complex equations

1 . ) )
sinh As (—e’ﬂs — Kk22ePe 1 K,|u|26_zﬁs> =0, (4.11)
K
—ksinh As (ue‘iﬁsi + Eeiﬂsu> + cosh As (eiﬂsu - ue‘iﬁs) =0. (4.12)

If sinh As # 0 then the (4.11) gives
1 2 2 _—2if3s

This implies that
(4.14)

which means that [z|2 + [u[? > & or y*y > 1/k2. But then y is not in the ball. Hence,
the only solution of (4.10) is s = 0. As we have just shown, the action of R on B**1(1/k)
is free everywhere and not only on p~'(0). As long as we choose D € sp(k) in such a
way that e*P generates a circle action on (0,x) € B¥*1(1/k) R acts on p~1(0) properly.
However, this need not be the case and we still can demonstrate the existence of a slice
on p~1(0). Namely, let

s={wx) en0): y+y=0}. (4.15)
S is a smooth manifold, diffeomorphic to a 4k-dimensional open ball when 8 = 0. If one

chooses x then (y — y*) is fixed by the condition that (y,x) be in x~1(0). Every orbit of
R ~ SO(1,1) passes through S because

os(y) +s(y)" =0 (4.16)
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has solutions for all |y| < 1/k. Every orbit meets S only once because ¢, (y)* + ¢s(y) =0
and y*+y = 0 implies s = 0. Hence, S is a slice and X,  g) = p~1(0)/R is a quaternionic
Kahler manifold diffeomorphic to S. X, » g) describes a (k + 1)-parameter family of
quaternionic Kahler metrics with negative scalar curvature. Let us point out that the
existence of nontrivial deformations in this case contrasts the compact case in which there
are no nontrivial deformations through quaternionic Kihler manifolds [L].

X(b,x,0) = HF ~ M, (r,0) are all diffeomorphic but they differ as Riemannian manifolds,
the first being an Einstein manifold with negative cosmological constant, the second the
flat Euclidean space, and the third hyperkahler (Ricci flat and Kéhler in particular).

In the k =1 case X(, ) is the metric constructed by Pedersen [P] and discussed
in [G2] from the N = 2 supergravity point of view. It is easy to observe that if we set
i = k?0,A = k and T = D then, as Riemannian manifolds,

’li_fi% X8 = Mr,0). (4.17)

The isometry group of X(, 5 gy equals to G x Sp(1) where G is a subgroup of Sp(k)
commuting with D.

Now let us consider our final example: The negative scalar curvature multicenter met-
rics. Again, we start with a quaternionic hyperbolic ball of HH*+! = Sp(1,k+1)/Sp(1) x
Sp(k + 1) as our ambient space. Let (wg,w;,u) be the homogeneous coordinate on it
as in (4.1). We also think of it as a Riemannian manifold with the quaternionic Kéhler
Sp(1, k + 1)-invariant metric (4.2). We introduce G x R-action on B¥*1(1/k) as follows

k—1
s (wo, wy,u) = exp(z QWiSAfA) (wo,wi,u)t, A=1,. k-1 (4.18)
A=1
( cosh A7 sinh A7 | ( wo
| O
sinh A7 cosh A\t | w1
¢r(wo, w1, u) = (4.19)

\ o) I e I )\u)

where
( 1 \ ( P2 \
D1 D2
1 0
fl = -1 ) j:2 = 1 ,
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...,Tk_]_ == ’ (420)

\ 1 -1/

7 € R, s = (s},...,s%71) is a coordinate chart on G in the neighborhood of the identity
element, i.e., s € g, and p = (p1,...,pr—1) € Q¥"!. Let us point out that choosing p
corresponds to the choice of a homomorphism from 7%~ into U(1). If p = 0, we have the
trivial homomorphism.

The quaternionic momentum section p for this action is given in terms of 3k quadratic
constraints

w1 0) = { (o w) € B0 s pa(umwnw) =05 A=0,1 k= 1] (42)

where
po(wo, w1, 1) = A(wiwy — wiwy) + u*-iu (4.22)

and
pa(wo, wr,u) =u*-iTu+ wiip,w — wyipawe, A=1,...k—1. (4.23)

Now T,’s are as in (3.13).
Just as before we introduce the inhomogeneous global quaternionic coordinate chart

on the ball B¥*1(1/k) > (y,x). In these coordinates our zero-momentum section is de-
scribed by the following constraints

~ * - A *

foly, x) =x"-ix+ —(y" —y) =0 (4.24)
- . . iPa
pa(y,x) =x"iTyx+y Way =5 A=1,...k—1. (4.25)

In terms of (y,x) (4.18) and (4.19) read as

/

~1
or(y) = ((cosh A7)y + £~ !sinh )\7')) ((/@ sinh A7)y + cosh AT)

‘ -1
$ or(x) =€"x ((m sinh A7)y + cosh )\T) (4.26)

@s,t(y,x) = (e%i(s'p)tye_%i(s'p)t, exp (27ritsATA) xe_2”(S'P)t>

\

where s-p = >, pas” and ¢s.(y,x) is one parameter flow in the direction of s € g.
Just as before, ¢, (y,x) describes a free action on the whole ball B¥*1(1/k). Also, any
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one-parameter subgroup of G X R acting nontrivially by R-part is free. The proof of this
fact is the same as the proof of (4.10). We can also show that ¢ +(y, x) generates a locally
free action for any s for some choice of parameter p. Let us first calculate the vector field
generated by this action

1 1 d

%V(yax) o %()OS t(y )

o (4.27)
( s'p)iy —yi(s-p), is*Tax — x(s-p)z’).

Vanishing of the vector filed V' at (y, x) is then equivalent to the following set of equations

y*iy(s-p) = |y|*i(s-p)

4.28
is*T,x = x(s-p)i. (4.28)
Suppose s-p # 0. Then equations (4.25) give
x*-isTyx = —y*(s-p)iy + (s: p)z (4.29)
and, comparing with (4.28), we get
. . . s-p)i
s Ty = [y p)i + C2 = [x2(s.p)
or .
(Il + [y/2) = —. (4.30)

But this contradicts (y,x) € B¥*1(1/k). Hence, in order for V to vanish on p~1(0), s-p
must vanish. Suppose that it does. Then the vector field

1

%V(y,x) = (0,45"T4x) (4.31)

vanishes on p~1(0) whenever
s4T,x = 0. (4.32)

Let us write (4.32) explicitly in terms of coordinates

.................................. (4.33)



If we can choose p in such a way that no two components of x can vanish on g~1(0) then
(4.33) would imply that s = 0 and our action would be locally free. That would mean
that

p_,; (z — ﬁ2y*iy), A=1,...,.k—1,

K
must satisfy the same conditions as £, in (3.14) for any fixed y such that (y,x) €
BFt1(1/k). But that is equivalent to the assumption that ip, /s satisfy these conditions
since i — k2y*iy # 0 for any y € B¥t1(1/k). This concludes the proof that the action of G
is locally free on ;= 1(0) for a generic choice of p. In general, there may be some orbifold
singularities in the quotient. Away from singular points, however,

Mprm) (L) = p~'(0)/G x R (4.34)
has a self-dual and Einstein metric with constant negative scalar curvature. Moreover, if
we set p, = —ik?€, and A = Ak then we can take x — 0 limit to obtain

lim Mp,x,0)(Zk) = M(g,n,0)(Z) = Mg .0 (Zi). (4.35)
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