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A Generalization
of the Momentum Mapping Construction

for Quaternionic Kahler Manifolds

KRzYSzZTOF (GALICKI

ABSTRACT: We present a method of reduction of any quaternionic Kéhler manifold with
isometries to another quaternionic Kihler manifold in which the isometries are divided out. Our
method is a generalization of the Marsden—Weinstein construction for symplectic manifolds to
the non-symplectic geometry of the quaternionic Kahler case. We compare our results with
the known construction for Kahler and hyperkahler manifolds. We also discuss the relevance of
our results to the physics of supersymmetric non-linear 0-models and some applications of the
method. In particular we show that the Wolf spaces can be obtained as the U(1) and SU(2)
quotients of quaternionic projective space. We also construct interesting example of compact
riemannian V-manifolds (orbifolds) whose metrics are quaternionic Kéhler and not symmetric.

1. Introduction

Quaternionic Kahler and hyperkahler manifolds are of increasing interest to both
physicists and mathematicians. In quantum field theory nonlinear o-model lagrangians
with self-interacting scalar fields on these manifolds play a very special réle: they admit
supersymmetric extensions. It is very well known that in 4-dimensional spacetime N =1
(N = 2) globally supersymmetric interactions of bosons and fermions are determined by
geometry of a Kéhler (hyperkahler) manifold M [1,2]. Scalar o-model fields ¢(x) are then
maps from 4-dimensional coordinate space (for instance Minkowski or Euclidean space)
into M. In N = 2 local supersymmetry the situation is different: The riemannian manifold
M is restricted to be a quaternionic Kéhler manifold of negative scalar curvature [3].

A more realistic picture must include also interacting gauge bosons. Thus, one would
like to be able to couple fermionic and bosonic o-model matter fields to the Yang-Mills
vector multiplet without breaking supersymmetry. This issue was first investigated by
Bagger & Witten [4,5]. They showed that under certain assumptions it is possible to gauge
holomorphic isometries of a Kahler manifold in N = 1 locally supersymmetric manner.
Later, C. Hull et al. [6] presented a very detailed discussion of consistent, supersymmetric
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gaugings of isometries on Kahler manifolds. They also discussed N = 2 supersymmetric
o-models and gauging isometries on hyperkahler manifolds. We refer the interested reader
to that work for all the details.

In all cases when the gauging described in [6] is possible one can introduce the super-
symmetrically and gauge invariant action. If one does not include the kinetic term for the
Yang-Mills fields then they are auxiliary and, consequently, after solving their algebraic,
non-propagating equation of motion, can be eliminated from the action. From the geomet-
rical point of view this can be understood and interpreted as the symplectic reduction of a
Kaihler or a hyperkéhler manifold with isometries. Hitchin et al. [7] have given a complete
discussion of such symplectic quotients in both the Kahler and hyperkahler cases. This is
a rather simple generalization of the Marsden-Weinstein reduction of symplectic manifolds
with symmetries [8], since all Kdhler manifolds are symplectic and all hyperkadhler man-
ifolds have three independent symplectic 2-forms. The above construction, formulated
in the language of so-called momentum mappings, is of special interest also for mathe-
maticians. It was implicitly used by authors of [9] to construct new hyperkéhler metrics.
There is quite a long list of examples of hyperkahler metrics that can be obtained through
hyperkéhler quotients of R¥". We give it in our paper in Table 1. (see also [10]).

As we already mentioned, in the case of N = 2 local supersymmetry the situation is
very different. A o-model manifold M must be quaternionic Kahler. Again, one would like
to address the problem of gauging isometries of the o-model manifold M in a way which
is consistent with N = 2 local supersymmetry. The problem was investigated by de Wit
et al. [11]. They coupled N = 2 supergravity to an arbitrary number of scalar and vector
multiplets. In our previous paper we tried to understand this coupling from the point of
view of the geometry of the o-model manifold M [12]. We pointed out that there exists
a very general construction that allows for a consistent reduction of quaternionic Kahler
manifold with isometries. Since there is a very beautiful mathematical description that
corresponds to the gauging of isometries of N = 2 supersymmetric hyperkahler o-models
given in terms of the momentum mappings, one should ask a natural question: Is there
any generalization of the Marsden-Weinstein reduction to the case of quaternionic Kahler
manifolds? From the point of view of field theory, such a formalism would correspond to
the gauging of isometries of N = 2 locally supersymmetric o-model.

Though a quaternionic Kahler manifold with non-zero scalar curvature does not have
a symplectic structure, we show that a quaternionic Kahler quotient can indeed be consis-
tently defined and that many examples of quaternionic Kahler metrics can be obtained as
the quotient of quaternionic projective space HP(n). In general, when the isometry group
does not act freely on the zero level set defined in Section 4, the above reduction leads to
manifolds with singularities or orbifolds. However these are special, quaternionic orbifolds
with a well defined quaternionic Kahler metric everywhere away from singularities. We
construct examples of such orbifolds and show that they are not quotients of Wolf spaces
by finite groups. In principle, one can always write locally supersymmetric o-model la-
grangians on orbifolds. The metric defined locally on the non-singular part completely
determines the interactions between the o-model and the supergravity fields.



Our paper is organized as follows: In Section 2 we recall the original Marsden-
Weinstein construction for symplectic manifolds. It can be applied to any Kahler manifold
with holomorphic isometries. In Section 3 we review how the above reduction general-
izes to the case of hyperkahler manifolds with triholomorphic isometries. We also give
a simple example of the Calabi metric. In Sections 4-5 we present our main result. We
introduce a quaternionic Kahler quotient and we apply it to quaternionic projective space
HP(n). As examples we show that the Wolf spaces X(n) = U(n + 2)/U(n) x U(2) and
Y(n) = SO(n+ 4)/SO(n) x SO(4) are just U(1) and SU(2) quotients of quaternionic
projective space. We also discuss an example of the quaternionic orbifold that was first
introduced in [12], showing that it is not a quotient of a Wolf space by some finite group.
And finally, in Section 6, we briefly discuss our results and their possible applications.

Since many statements are given without rigorous proofs, we refer the reader interested
in details to [6, 7, 8, 13-15].

2. The Marsden-Weinstein Reduction of Kahler Manifolds with Holomorphic
Isometries

In this section we review the discussion of [7] (see also [5]). Let M be a smooth
Riemannian manifold with a metric h:TM xTM — R:

ds® = hapdz® @ dzP, (2.1)

where {z®} ; @ = 1,...,dimM are local coordinates on M. Let us introduce an almost
complex structure on M, i.e., an endomorphism of TM; J : TM — TM such that
J? = —1. The manifold M is complex when the almost complex structure J is integrable
or, equivalently, when

NX,Y) ¥ 2L xIY — LxY — JLxJY — JL;xY) =0 (2.2)

forall X, Y e TM. N: TM xTM — TM is called the Nijenhuis tensor.

Let us suppose that the metric (2-1) is Hermitian with respect to the complex struc-
ture J:
h(X,Y)=h(JX,JY) ;VX,Y € TM. (2.3)

Then M is called a Hermitian manifold. If the complex structure is covariantly constant
with respect to the Levi-Civita connection V

VxJ=0 ; XeTM (2.4)
then M is called a Kihler manifold. Now, we can define a 2-form w € A2M
w(X,Y) ¥ nJx,Y). (2.5)

Since both the metric A and the complex structure J are covariantly constant with respect
to the metric connection V, w is also covariantly constant. Consequently, it is a closed,
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non-degenerate 2-form globally defined on M. It is usually called the Kahler form and it
defines a symplectic structure on M. Thus any Kéahler manifold (M, h, J) is symplectic.

Let G be a connected Lie group and Gx M — M an action on M. If the above action
preserves the 2-form w we call it a symplectic (or holomorphic) action. Correspondingly,
the infinitesimal action of G on M is given in terms of vector fields X such that for any
one-parameter subgroup of G generated by X

ﬁxw =0. (2.6)
If the above action preserves the metric h it is an isometry of M and
Lxh=0. (2.7)

Infinitesimal isometries are generated by Killing vectors; a Killing vector on a Kahler
manifold which satisfies (2.6) is called a symplectic (or holomorphic) Killing vector. To
each element of the Lie algebra g of the Lie group G that acts holomorphically on M there
corresponds a holomorphic Killing vector field X on M. With each symplectic Killing
vector field X we associate a Hamilton function fX on M, such that

ixw = df . (2.8)

The Hamilton function f% is defined only up to an arbitrary constant. Eq.(2-8) defines
a so-called momentum mapping ® in the following way: For every element of the Lie
algebra g we have a function on M given by (2.8). With each point m € M we associate
an element ®(m) of the Lie co-algebra g*:

(®(m), X) = f¥(m). (2.9)
Variation with respect to m gives us a smooth mapping
d: M —g". (2.10)
Furthermore, the action of G on M is called Poisson if
T = {5 Y = w(X,Y). (2.11)

For a Poisson action of G on M the following diagram commutes:

M €S M
J'(b Ad: l‘P
g — g~

or in other words the momentum mapping ® is equivariant. In general the function fIX:Y]
differs from the Poisson bracket of fX and f¥ defined in (2.11) by a constant

Y = {5 M+ oX,Y). (2.12)

4



C(X,Y) is a bilinear, skew-symmetric function on the Lie algebra g. Using the Jacobi
identity we obtain the following property:

C(X,Y],2)+ (12, X],Y) + C([Y, Z], X) = 0. (2.13)
If we choose different integration constants for f* than C(X,Y) is replaced by:
C'(X,Y) = C(X,Y) + p([X,Y]), (2.14)

where p is a linear function on the Lie algebra. C is called a two-dimensional cocycle
of the Lie algebra g. The relation (2.14) defines equivalence classes: C' and C are in
the same cohomology class when (2.14) holds. One can introduce the cohomology group
H?(G;R). For semi-simple, finite-dimensional Lie groups H'(g; R) = H?(g;R) = 0. This
means that all two-dimensional cocycles are cohomologous, and that the action of G' on
M can always be chosen to be Poisson just by adding constants to the Hamilton functions
f%. The notion of the momentum mapping is due to Souriau [16]. He also showed that

the momentum mapping ® is equivariant with respect to a certain affine action of G on
*

g .

It was first noticed by Bagger & Witten [4] that the non-vanishing of C'(X,Y) is an
obstruction to the consistent gauging of holomorphic isometries on a Kahler manifold.
Hull et al. [7] gave an explicit method of calculating the obstructions C'(X,Y’) in both the
Kahler and hyperkahler cases.

Let us assume that our momentum mapping is equivariant. Consider a level set of

the momentum p:
M,={meM: ®m)=p}; peg" (2.15)

In general M,, is not G-invariant. Only the isotropy group of p in the co-adjoint represen-
tation leaves M, fixed. We call this subgroup of G D Gp. If p is the regular value of ® (so
that M, is a smooth submanifold of M)and if G}, is compact and acts freely on M, then

the orbit space:

=5 def
M, ¥ MG, (2.16)

is again a smooth Riemannian manifold of real dimension dimﬁp = dimM —2dimG),. The

projection mapping M, onto M,
T: M, — Mp (2.17)

is a principal G-fiberation. Moreover (see [8]) there exists a unique symplectic 2-form w,,
on M, such that

T wp = 1w, (2.18)
where 4 is the inclusion mapping of M,, into M. The same pullback defines a unique complex

structure on M,:
7T*Jp =] (2.19)
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and a unique Riemannian metric lsz. It can easily be shown using the O‘Neil formulas that
Jp is a covariantly constant, Hermitian complex structure on (M, hy); (see [7]). Thus the
reduced manifold M, is not only symplectic but also Kahler.

As an illustrative example let us consider 2n-dimensional complex vector space C"
with a flat Hermitian metric

ds? =dz®°®dz%, a=1,..n (2.20)

and the Kahler 2-form
w=1dz" N dz“. (2.21)

We take the following holomorphic U(1) action on C":
oi(z) = e*™ %z, t€|0,1). (2.22)

It acts freely on C™ \ {0}. In standard coordinates, the holomorphic Killing vector field
has the form
X*(z) =iz (2.23)

Now, one can calculate the Hamilton function for this U(1) action from (2-8):
fX(2,2) =% = (2.24)

The p-momentum for the p # 0 level M, is just S?*~'. G, = U(1) and it acts on the
non-zero momentum level freely. The induced symplectic 2-form w,,

@p = idZ* N dz®™ — idz%2* A\ d2P7ZP (2.25)

is just a symplectic U(n)-invariant 2-form on CP(n — 1) with the standard Fubini-Study
Kahler metric: _
hy = (6%F — 227P)dz* ® d2P. (2.26)

The possibility of obtaining new Kéahler metrics through the symplectic quotient reduction
is of rather little interest, since there are many other ways to generate interesting examples
of them. However, the above method has proven to be extremely fruitful when generalized
and applied to the hyperkahler case. Together with the Legandre transform method it has
led to the discovery of many new hyperkdhler metrics [9].

3. Hyperkéahler Quotients

In this section we review the generalization of the Marsden-Weinstein construction
to hyperkahler manifolds with triholomorphic isometries. Let us recall that a hyperkahler
manifold is a riemannian manifold M with three independent complex structures J?!, J2, J>

Jio JI = —5Yid 4 €7k gk (3.1)
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that are covariantly constant, and metric A that is Hermitian with respect to all three
complex structures. Consequently, M is a Kahler manifold with respect to these three
complex structures. Thus, as in the previous section, we can define three closed, non-
degenerate, symplectic 2-forms on M:

Ww(X,Y)=h(J'X,Y), X, YeTM, i=1,2,3. (3.2)

Now, let us consider the group of isometries on M generated infinitesimally by Killing
vector fields. If the action of some subgroup G of the isometry group preserves all three
symplectic 2-forms than we call it a trisymplectic (or triholomorphic) action. In terms of
the triholomorphic Killing vector field on M we can express the above statement in the
following way: .

Lxw' =0 Y i. (3.3)

We can exactly follow the method of the previous section to calculate the Hamilton func-
tions of the Killing vector field X with respect to all three symplectic 2-forms w*. We can
think of them as of three equivariant momentum mappings:

@' M — g (3.4)
or, equivalently, we can consider mapping :
d: M — g* R (3.5)
Furthermore, let us introduce the p‘-momentum level for each mapping

My & {me M ; ®(m)=p'}, peg* (3.6)

and let us take def
M, = My N Myz N My,

where p = (p*, p?,p?®) € g* @ R3. If p is a regular value of the mapping (3.5) then M, is an
algebraic smooth submanifold of M. Again, we can consider a subgroup of G such that p*’s
are stationary points in the co-adjoint representation Ad;pi = p*. We denote it, as before,
Gp. Assuming that G, is compact and that it acts freely on M,, we can introduce a space

of orbits Mp = M, /G,. M, has a uniquely defined quaternionic structure in terms of three
closed 2-forms &}, given by (2.18) or in terms of covariantly constant tensors J} as in (2.20).

Consequently, M, is a hyperkahler manifold of real dimension dimM,, = dimM — 4dimG,,
(see [7]).

As an example (see [9]), we consider the U(1) quotient of H® = R*". Since H" has an

integrable global quaternionic structure we can work with global quaternionic coordinates
u=(ul,...,u"tl). We take the standard flat metric on H":

ds® =) du* ® du®, (3.7)
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where u® is the quaternionic conjugate of u®. We introduce the H-valued 2-form w

w= Zdﬂa A du®. (3.8)

For any two H-valued forms of degrees p and ¢ we have

UAO=(-1)PIOAVT. (3.9)

We observe that w is purely imaginary since w+w = 0. The three quaternionic components
of w, w = w'e; correspond to the quaternionic structure in (3.2). (e, e?, e?) def (1,5, k) are
the imaginary quaternionic units. It is trivial to see that w is closed. Thus H" with the
metric (3.7) and the quaternionic structure (3.8) is a trivial example of an hyperkahler
manifold.

Now, let us consider the circle action on H" defined as follows:
oi(u) = ™,  t€[0,1), (3.10)

where ¢ is one of the quaternionic units. Infinitesimally, the above action is given by the
H-valued Killing vector field X:

X%(u) = wu® (3.11)
which is triholomorphic.

Now, we want to calculate the Hamilton functions of this Killing vector field. It is
trivial to see that

= Zﬂaiuo‘ —fX(u, 1) ZfX m € M. (3.12)

fX is now a quaternionic valued, purely imaginary function on M. We consider the

def : .
p = p;e’ momentum level in H":

={ueH": Zﬂaiuc‘ =p, P=—-p} (3.13)

For p # 0 it is a (4n — 3)-dimensional algebraic submanifold of M. The circle action is free
on M, so that M, = M,/U(1) is well defined, smooth manifold with hyperké&hler metric.

Topologically it is the cotangent bundle of complex projective space M, = T*CP(n — 1)
and the hyperkahler metric on it is called the Calabi metric. In 4 dimensions, the Calabi
metric is simply the well known Eguchi-Hanson gravitational instanton. A very large class
of hyperkahler manifolds with explicitly known metrics can be obtained as hyperkahler
quotients of R**. In Table 1 we list all such non-singular examples.
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M Gp dim Mp Hyperkahler metric on Mp
H" U1t 4 multi-center Eguchi-Hanson instantons
H"” RxU(1)"2| 4 multi-center Taub-NUT instantons
H" U(1) dn —4 Calabi metric on T*CP(n — 1)
H"» R dn — 4 generalization of the Taub-NUT metric
H" U™ 4n — 4m | multi-center Calabi metrics
Hm(nt+m) | U(m) 4nm Lindstrom-Ro¢ek metric on T*G5 .,

Table 1: Some hyperkahler quotients of flat spaces

The details can be found in [9, 10]. One must specify the action of the quotient group G, in
such a way that it is triholomorphic and it acts on the non-zero momentum level freely. As
already mentioned, only then the orbit space is a smooth Riemannian manifold. Otherwise,
in more general situations, one obtains manifolds with singularities. If these singularities
arise due to finite isotropy groups then the quotient leads to interesting examples of V-
manifolds or orbifolds with a hyperkahler metric everywhere away from singular points.
Table 1 does not contain a complete list of hyperkéahler spaces and hyperkdhler metrics. It
is, for instance, known that the K3-surface admits a hyperkahler metric, but its explicit
form has not been found yet. Notice that all the manifolds listed in Table 1 have Killing
vectors.

4. Reduction of Quaternionic Kahler Manifolds

In this section we generalize the results presented in Section 3 to quaternionic Kahler
manifolds. Now, the situation is very different from the hyperkahler case because quater-
nionic Kahler manifolds are not symplectic. The Marsden-Weinstein construction cannot
be applied trivially but we can generalize it in such a way that a consistent reduction is
possible. Let us start with some definitions and properties of quaternionic Kahler mani-
folds.

A quaternionic Kédhler manifold is in some sense a quaternion analogue of a Kahler
manifold. It has a quaternionic structure, i.e., three locally defined (1,1) tensors that in
each neighborhood U,y C M satisfy the quaternion algebra:

7 J
J(a) © Jiay =

Transition functions S;;(m) on Uy NUgy C M:

—0%id + €R Il 6k =1,2,3. (4.1)

Tl (m) = Si5(m) Tl (m),  meM (4.2)
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are local SO(3) rotations. Thus we have a three dimensional vector bundle W of endo-
morphisms over M. (From now on we shall omit the index («), remembering that all
geometrical objects with SO(3) indices are defined locally on M). If the manifold M
admits such a bundle we say that it is an almost quaternionic manifold. Since we also
have a metric h on M we can construct a bundle V of 2-forms w® € /\2 M over M:

Ww'(X,Y)=nJ'X,Y), X, YeTM. (4.3)

Then the 4-form: . .
Q= Zw“ AW (4.4)

is defined globally on M. The manifold M is said to be quaternionic Kahler if the 4-form
Q) is parallel with respect to the metric connection. This in turn implies that 2 is also
harmonic and closed:

VQ =dQ=AQ=0. (4.5)
Eq. (4.5) implies the existence of three local 1-forms on M such that

. .. . X 1
VxJi==>Y é*ad(X)J* ;aie \ M (4.6)
Jk

or, equivalently, in terms of the 2-forms w?

do' = = " Fal AWk, (477)
gk

The V-valued 1-form « is just the Sp(1) part of the riemannian connection with the Sp(1)
curvature 2-form .
Fi=dof + 1Y pa. m
gk
Due to (4.5), the holonomy group of a quaternionic Kahler manifold is a subgroup of
Sp(n)-Sp(1l) (n = dimM). All quaternionic Kahler manifolds of dimension bigger than 4
are Einstein spaces, which implies that the S p(1) part of the riemannian curvature 2-form
is proportional to w*: ' ‘
F'=\n+2) "', (4.9)

where A is the proportionality constant between the Ricci tensor and the metric [17]. In
4 dimensions eq. (4.5) is meaningless: the volume 4-form of any 4-manifold is closed.
Eq. (4.9) then may be used to extend our definition of quaternionic Ké&hler manifold. It
restricts M to be an Einstein and self-dual manifold. Hitchin [18] proved that there are
only two such manifolds: HP(1) = S* and CP(2). As we already mentioned, the restricted
holonomy group of a quaternionic Ké&hler manifold is a subgroup of Sp(n)-Sp(1). This
implies the factorization of the Riemann curvature tensor R into Sp(1) and Sp(n) parts.
But even more is true: Alekseevskii [19] showed that R can be written in the following
form:

R = )‘RH]P’(n) + Ro (4.10)
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where A is a constant proportional to the scalar curvature, Ryp(y) is the curvature tensor
on quaternionic projective space, and Ry is the Ricci-flat part of the Sp(n) curvature
and behaves as a curvature tensor of a Riemannian manifold with the holonomy group
contained in Sp(n). Such manifolds are exactly hyperkahler manifolds discussed in the
previous section. We clearly see that quaternionic Kahler manifolds with zero scalar cur-
vature are hyperkahler. In the language of our 3-dimensional vector bundle V), that means
that the Sp(1) curvature 2-form F* vanishes and the bundle V is trivial (the connection
1-form w can be gauged everywhere to zero). The global existence of the covariantly con-
stant 2-forms w® follows, and according to the definition of Section 3, the manifold M is
hyperkahler.

All homogeneous quaternionic Kahler manifolds were classified by Wolf [20] and Alek-
seevskii [19, 21]. For A > 0 they are compact symmetric spaces:

U(n +2) SO(n +4)

__Sp(n+1) ; =
HP(n) T =x0@ ™ = 50m) x 500

~ Sp(n) x Sp(1)’

of dimension 4n,n > 2. For n = 1, as was already mentioned, we have only two cases:

X(n)=

(4.11)

X(1)=CP(2) , HP(1) =Y(1) = S*. (4.12)
Taking the isometry group to be an exceptional Lie group, we obtain five more examples

G2 F4 EG
SU2) x Sp(1)” Sp(3) x Sp(1)’ SU(6) x Sp(1)’

Er FEg
Spin(12) x Sp(1)’ E7 x Sp(1) °

For A < 0 there are non-compact analogues of (4.12-13) and non-symmetric examples con-
structed by Alekseevskii [21] described by quaternionic representations of Clifford algebras,
classified by Atiyah, Bott & Shapiro [22]. Examples of non-homogeneous quaternionic
Kahler manifolds are not known. Among other interesting properties, any quaternionic
Kahler manifold has a naturally associated complex manifold or twistor space fibering over
it [23]. It is also known that any quaternionic Kéhler manifold of dimension 8n is spin.
In general one cannot introduce quaternionic coordinates on M. In the compact case,
the integrability condition is so restrictive that the only example of integrable structure
exists on HP(n). Although quaternionic Kéhler manifolds are in general not symplectic
or Kahler, it may happen that there is a covariantly constant complex structure that is
defined globally on M. This is, for instance, the case for X (n). But HP(n) is not even
almost complex.

(4.13)

Let us consider I‘( N (M) ® V): the space of differential, exterior p-forms on M with

values in the bundle V. The Sp(1) part of the riemannian connection on V gives us a
“covariant derivative” dV

r(/\O(M)®v) £>r(/\1(1\4)®v) d—v>F(/\2(M)®V) LA (4.14)
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In local coordinates of V we can write
dVO! =do' + ) ekl AOF, (4.15)
7,k

where © € F(/\p (M) ® V) is an arbitrary p-form.

Let us introduce a Killing vector field X on M. To carry out a reduction similar
to that presented in the previous sections we first require X to be a quaternionic Kahler
Killing vector field, i.e., such that corresponding group action on M preserves the 4-form
Q. This means that

LxQ=0. (4.16)

Notice that the group action G x M — M does not have to preserve each w? separately.
It is sufficient that . o
Lxw' = Z etikpdyk, (4.17)
3.k
where 77 are some functions locally defined on M (i.e. r e I‘(/\O(M ) ® V)) . Using X

and w* we can introduce 1-forms /3* defined locally on M
B =ixw. (4.18)
It is easy to see that with each quaternionic Kahler Killing vector field we can associate a
unique section fX =Y. fiXwi € F(/\O(M) ® V) of V in the following way [13]
Bt =dY fi¥. (4.19)
Let us apply dV to both sides of (4.19). We have
dV @t =dVdY ¥, (4.20)
One can however easily check that for any © € F( N (M) ® V)
AEACEE A AN L (4.21)
3.k
where F' is the Sp(1)-curvature 2-form defined in (4.8). Now, using (4.9) we see that

d¥dVe! = A(n+2)71 Y €dhuwi A OF, (4.22)
7.k

We see that, unlike in the hyperkéhler case, the non-vanishing Sp(1) curvature F* allows
one to find the section fX uniquely in terms of w?, of, B¢. Namely, using (4.19) we have

4B+ 3 €ittad p §F = An+2) 703 kit X (4.23)
g,k gk
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Since the forms w? are non-degenerate and pointwise linearly independent, we can find a
unique solution for f%X. It can be given in terms of £Lxw?® as follows. Let us apply ix to
both sides of (4.23). We obtain

ixd(ixw') + Y €F(ixad)BF = Mn+2)71 Y ¥ (ixw?) FEX. (4.24)
gk J.k

Since ixd(ixw?) = ixLxw?, using (4.17) we get

Z rigk 4 Z €TR(ixad)p* = =A\(n +2)7! Z Ik 3 X gk (4.25)
7.k 7.k gk
Assuming that when X # 0 ixw® = J'X are pointwise linearly independent and non-
degenerate we can write

P = (2 (i £ ), (120
where 7¢ is the section of V defined in (4.17).

Now, let {w!,w? w3} be a local frame field for V. We write

3

£X =) Xl (4.27)

=1

£X is well defined, locally SO(3) gauge invariant section of the bundle V, uniquely deter-
mined by the Killing vector field X. By analogy with the previous section we can define
a "momentum mapping” for the action of G on M. At every point m € M with each
quaternionic Kahler Killing vector field X we can associate a Lie co-algebra g*, V-valued
element, ®¢(m)

Z<<I>i(m), Xm>wi =3 FiEm (m)w. (4.28)

(2 (2

Varying with respect to m € M we get a smooth mapping for the G-action
: M —g'eV. (4.29)

Because of the uniqueness of the section fX the map X — fX transforms naturally
under G and consequently our momentum mapping ® is always G-equivariant.
Let us assume that

def

My= {meM; &(m)=0, i=1,23} (4.30)

is a smooth algebraic submanifold in M(i.e., , the section ® is transversal to the zero-
section of V). Since ® is G-equivariant and the zero section is G-invariant it follows that
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My is G-invariant submanifold in M. Thus, if G acts on M freely, then one can introduce

a quotient space
Mg = My/G. (4.31)

One can prove [13] that Mg is again a quaternionic K&hler manifold with a unique quater-
nionic Kahler structure defined by

M+~ M, = Mg, (4.32)

W*QG =3*Q. (433)

Notice that in the A — 0 limit (where A is a constant proportional to the scalar curvature
of M), the vector bundle V trivializes to R® and the reduction process described here
approaches the one in hyperkahler case. In the next section we shall discuss some examples
of this reduction in the case of quaternionic projective space.

5. Quaternionic Reduction of HP(n) and Quaternionic Orbifolds

We want to illustrate the quaternionic reduction in the case of the geometry of quater-
nionic projective space. Quaternionic projective space is in some sense a model example
of a quaternionic Kahler manifold. Moreover, it is the only compact quaternionic Kahler
manifold with an integrable quaternionic structure. Thus it is possible to introduce stan-
dard quaternionic Fubini-Study coordinates on HP(n).

Let u = (ul,...,u"!) be the quaternionic global coordinates on H"*1. We introduce
a S§47*3 ynit sphere in H*+!:

n+1
St = fu e Y wtu =1} (5.1)
a=1

Sp(1) acts on S4**3 by multiplication from the right with unit quaternions v:
u® ~uv, Tr=1. (5.2)

Quaternionic projective space HP(n) is defined as the Sp(1) quotient of S47+3. (§47+3 g
a Sp(1) principle fiber bundle over HP(n)). The u®’s are usually called the homogeneous
coordinates on HP(n). One can also introduce inhomogeneous coordinates inert under the
action of Sp(1) (the Fubini-Study coordinates). It is however more convenient to work
with homogeneous coordinates for the moment.

In terms of u = (u',...,u™"') the Sp(n + 1)-invariant metric on HP(n) is given
ds? = 23 dut @ du — = 3 \(@du®) ® (dufuf). (5.3)
c < ¢
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This metric, just as in the CP(n) case, is associated to the fundamental H-valued 2-form
w

4 4
—_ = —Q a = — a —3, 8
w CZdu A du CZ(’U, du®) A (du”u”). (5.4)
(e ap
It is obvious that w = —w, so that w is purely imaginary and we can write

3
w= Zwiei, (5.5)
=1

where e! = {i,j,k} are quaternionic units. c is just a constant equal to the quaternionic
sectional curvature. The H-valued Sp(1) 1-form « is given in quaternionic coordinates

o= Zaiei = QZﬂadua (5.6)
] o’

and is also purely imaginary.

We can also write dV in quaternionic language. If © is an arbitrary but purely
imaginary H-valued p-form then

1
dv®:d®+§(a/\®—®/\a). (5.7)

The 2-form w is indeed covariantly constant with respect to d¥
dvw = 0. (5.8)
The quaternionic Kahler 4-form €2 is then given by
Q=Q=wAw. (5.9)
It is real and closed.

Now, let us consider a circle action on HP(n) defined by the following infinitesimal
transformations
ou® =idu® =iAX%u), AeR (5.10)

or globally .
0¥ (u) = > ™yt e o, 5) (5.11)

Eq. (5.10) defines a Killing vector since the above U(1) is a subgroup of the isometry
group Sp(n+1). Moreover, the action (5.11) preserves the 2-form w and consequently the
4-form 2. Hence, we have

EXQZ,CXh:,CXwZO (5.12)
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and X is a quaternionic Kéhler Killing vector field on HP(n). Notice that, exactly as
for complex projective geometry, where all isometries of CP(n) are holomorphic, here all
isometries of HP(n) are quaternionic Kéhler.

We can compute the section fX associated with the U(1) action. %X is again an
H-valued function on HP(n)

=Y uu® = —fX. (5.13)
(63

The zero momentum level set My is then defined by

M, ¥ {[u] € HP(n Ti u*iu® (5.14)

My is a (4n — 3)-dimensional algebraic submanifold of HP(n). It is U(1)-invariant and the
circle action on My is free (although it is obviously not free on HP(n)). Hence, the orbit
space is a smooth quaternionic Kahler manifold. One can easily see that Mg = My/U(1)
is indeed the homogeneous symmetric space with isometry SU(n + 1):

SU(n+1)
SUn—1)xSU(2) xU(1)’

Mg=X(m—-1)= (5.15)

We would like to mention that the above construction was first used by Breitenlohner &
Sohnius [24] to construct a locally N = 2 supersymmetric coupling of non-linear o-model
with scalar fields paramatrizing the complex Wolf space X (n).

Another example of the quaternionic reduction is provided by the SU(2) action on
HP(n) given infinitesimally by the following transformations

(5§\i)u°‘ = Xe'u® = X! X D2 (q) (5.16)
where {e'};—1 23 = {i, j, k} are quaternionic units. Naturally, we have

63, 60u Z €k gy (5.17)

The corresponding sections of the vector bundle V are

fOX (T, u) Zua ue, (5.18)

We introduce the zero level set for the action of SU(2)

My € {[u] e HP(n) : fP¥(@u)=0, i=1,23} (5.19)
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The manifold My is an SU(2) invariant algebraic submanifold of HP(n). SU(2) acts on M,

freely. Consequently, Mg = M,/SU(2) is a smooth riemannian manifold with a unique
quaternionic Kahler structure. Its isometry group is SO(n + 1) and it is a homogeneous
space. In fact it is again a Wolf space:

~ B SO(n+1)
Ma =Y(n=3)= 550 —3 % s0(0)"

(5.20)

These two cases of quaternionic Kahler reduction are the only ones we know that give
a smooth complete riemannian manifolds with holonomy Sp(n)-Sp(1l). Unlike in the
hyperkahler case, it is rather difficult to find actions of isometries which are free on the
“zero momentum level set” M. It would be, however, very interesting to look for such
actions: especially on spaces with exceptional isometry groups, such as those listed in
(4.13). The question of the existence of non-symmetric, compact, quaternionic Kahler
manifolds with positive scalar curvature is still open. It is known that in four dimensions
one has only two examples of self-dual Einstein metrics: CP? and S%, each of which is a
symmetric space. This result is due to Hitchin [18]. But in dimension larger than four we
do not know the answer. If such spaces do indeed exist, one might expect that our method
could be used to construct examples.

Although we have not found any new examples of non-symmetric compact quater-
nionic Kahler manifolds, our reduction does yield interesting examples of compact quater-
nionic orbifolds with quaternionic Kahler metrics away from singular points.

As before, we consider an S!-action on the quaternionic projective space HP(n),
defined infinitesimally in terms of the Killing vector field X *(u)

Su® =iy T*uf =iAX*(u), A€R, (5.21)
B

where {u®}4=1,...n+1. are homogeneous coordinates on HP(n), ¢ is one of the quaternionic
units, and T*? is some real, symmetric matrix. (In the previous case we took ToB = §oB8 )
Let us notice that 7 can be always diagonalized by an Sp(n+ 1) rotation of coordinates.
We also assume that it is non-degenerate, i.e., , detT # 0. The zero-momentum level set
for the above S'-action is given by the following constraints

n+1
Mo E {[u] e HP(n): f¥(@u)= Y w%Tu’ = 0}. (5.22)
a,B=1

From the assumption that detT # 0 it can be easily shown that the Killing vector field
X*(u) in (5.21) is non-zero everywhere on M,. Thus the U(1)-action on M is locally
free and the space of orbits My/S* is an orbifold with a quaternionic Kéhler metric at all
non-singular points (see [13]). Before we examine its structure, let us recall some general
facts about orbifolds.
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Let G be a compact group of transformations of a riemannian manifold M. Every
orbit passing through a point m € M

G(m)

{m'e M: m' =gm, geG} (5.23)
is then a compact submanifold of M. In general G does not have to act freely on M and
we have different isotropy groups H,,

H, ¥ {geG: gm=m} (5.24)

at different points on M. When my, my belong to the same orbit H,,, = gH,,,g~* for
some g € G, i.e., H,,, and H,,, are conjugate. But it is, in general, not true for the points
that belong to the different orbits.

If G and M are compact there exists a principal isotropy group H C G such that
VmeM 3¢, €G HCgmHng " (5.25)

The manifold M stratifies with respect to the group action. Two points belong to the same
stratum if their isotropy groups are conjugate. The stratum consisting of orbits with the
principal isotropy group is an open, dense submanifold in M [25, 26]. If all isotropy groups
are conjugate to the principal one there is only one stratum and the orbit space M/G is
again a compact, smooth, riemannian manifold with a metric given by the riemannian
submersion. In particular, such is the case when G acts freely on M, i.e., the principal
isotropy group is trivial. If, however, there is more than one stratum the orbit space M /G
cannot be given a smooth riemannian structure.

If all isotropy groups are of the same dimension (i.e., they differ from the principal one
by some discrete subgroups) the quotient space is an orbifold. An orbifold is always locally
R" /T" where T is a discrete subgroup of O(n). It can be viewed as a riemannian manifold
with singularities (or upon removal of the singular set — as a riemannian manifold with
an incomplete metric).

In some cases it is known how to repair these singularities by removing singular points
and gluing in manifolds with appropriate boundaries. This construction is called blowing
up or resolving singularities. One such interesting example is the K3 metric. As suggested
by Page [27], it can be obtained by gluing in 16 Eguchi-Hanson metrics to the 4-dimensional
torus with 16 isolated singularities. In general, however, and this also includes our case,
it is not known how to repair these singularities on orbifolds.

Now, we want to examine the singular set of our orbifold My/S'. We first introduce
the following inhomogeneous Fubini-Study coordinates on HP(n):

wo o

:( — ; _ ), 1=1,..,n
\/1 + > wrw? \/1 + > wrw?
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where w = (w!,..., w") are n quaternions and ¢ is a unit quaternion. Notice that (w*; o)

parameterize the S4"*3 sphere (i.e., the constraint (5.1) is solved). The Sp(1) action on
S§47+3 in terms of the new local coordinates reads

(w'; o) vESp(1) (w*; ov) (5.27)

Thus {w'};=1,..n. are inert under the Sp(1) action and o gets multiplied by a unit quater-
nion from the right. It is then the action of Sp(1) in the fiber. The projection

m(w'; o) = w' (5.28)

is the canonical projection from the bundle to the base space HP(n). Now, let us describe
St action on HP(n) in {w®} coordinates. We take the matrix 7% in the following form

T = diag(1,...,1,9/p) ; ¢,p € Zy; ¢ <p. (5.29)

where ¢ and p are relatively prime integers so that ¢/p is rational. Thus the global action
in the homogeneous coordinates may be written

e27rztuz; i=1

pi(u)
PPt (u) = 2 rtyn ! (5.30)

where t € [0, %) for even (p+ ¢) and t € [0,p) for odd (p + ¢). First, let us assume that
u™*1 £ 0 and let us go to the projective coordinates. Then (5.30) becomes

as the circle action in the bundle S4**3. The above action projects to the base space (i.e.,
HP(n)) as follows

w;(w) — 627ritwie—27ri%t (532)
The zero level set My in (5.22) is thus given by the following algebraic submanifold in

HP(n):
HP(n) D My = {w € HP(n Zw iw'* —2—} (5.33)

Let us introduce the following notation

i def w + jw’, (5.34)

where {i, j,ij} are three quaternionic units. (We simply split our quaternionic coordinates
into two complex pieces: one commuting with ¢ and another anticommuting.) As it is
easy to see,

n

Mo = {(w',,w" ) € HP(n) : Z(erw+ — W w' Z

i=1

(5.35)

+Q
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and (5.32) gives

pi(ws) = e (5.36)
Define def _ .
HP(n) > My > M’ = {(w',w") € My: w' =0 Vi}. (5.37)

It is trivial to see that there is a discrete subgroup of S! that acts as the isotropy group
on M. This is the cyclic group

p 2 p(p+q-1)
7 : {t =0, , s ooy for (p+ q) odd 5.38
pra ¢ =0 L 2 PP o (ptg) (539
and 0 ( 2)
p p p+q—2)p
Zv+q : {t =0, , s s for (p + q) even. 5.39
t p+q’ ptg 2(p+4q) J p+4) (5:39)

(Notice that w? = 0 is excluded from M, by the constraints.) However, M’ is not the
only set with the non-trivial isotropy group. Let us consider the u”*! = 0 case

HP(n) > Mo > M" ef {u® € My : u"' =0}, (5.40)

Again, S' does not act freely on M"”. There are cyclic subgroups Zs, and Z, for (p + q)
odd and even respectively that leave M" fixed. The action of the circle is free outside
My \ {M' U M"}. Thus our manifold for any ¢/p stratifies into three distinct strata.
Consequently, on the orbifold, there are two disjoint singular sets M’/S! and M" /S of
the real dimensions 2(n—1) and 4(n—2) respectively. M’/S? has the topology of CP(n—1)
and M"/S! has the topology of the Wolf space X (n—2). In four dimensions, for instance,
the corresponding singular sets are S? and a single point. It strongly resembles the bolt
and the nut of CP2. However, in the case of CP? those are only coordinate singularities,
whereas in our orbifold case these are real singular sets.

Now, we would like to know if our examples of riemannian, quaternionic orbifolds
are different than those which can be obtained as quotients of the Wolf spaces X (n — 1)
by finite groups. We shall demonstrate that such is indeed the case. Let us begin with
explicit computation of the metric at all regular points. The Fubini-Study metric (5.2) in
the projective coordinates {wi}i=17._.7n. reads

AV L dwt @dw' 4305, (@ dw?) ® (dw’w?)
C]'+Zz lwwz c (]‘+Zz lwwz)

ds? = (5.41)

The riemannian metric on the orbifold can be obtained by the riemannian submersion and
one can easily see that

457 = ds? = 2O F X T (5.42)
c (1+Y 0 ww)

where

S0 + Y w) Y (it — whidu’) =V (543
= =1
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and a = ¢/p. Thus

10 (dwtiv® — whidw') @ Y i, (dwtiv® — wiidw?)

A2 3.2 1+

ds® = ds? — 02+ S ) (Lt S w) : (5.44)
where

w=wy + jw_ = f( Y i\/Zd’id’i_) +jf( . i\/Zd’id’i_) (4.45)
and

o
f(¢+a¢—): . = .
D IR A
Here {(bﬂr ,gbi_}i:l,_,,,n_l are local coordinates on the regular part of the orbifold M,.

(¢ < oo, 5+¢+ # 0). Let us take a = cA. The constraints (5.35) are solved and the
circle action is fixed.

(5.46)

Thus we obtain a one-parameter family of metrics g(a). As pointed out in [12] we
can take the limit

9(0) = lim g(a). (5.47)
It turns out that g(0) is the Calabi metric [28]. g(«) is a regular function of @ € (0, 1]. Our
orbifold picture makes sense only for rational a but away from singular points this does not
matter. We want to know if g(«) is locally symmetric. Since we have calculated it explicitly
we could compute the Riemann curvature tensor and check if it is parallel with respect to
the metric connection. This is a straightforward but rather tedious calculation. Instead we
give a very simple argument that g(«) cannot be locally symmetric for an infinite number
of values of the parameter a. Since the metric g(a) is quaternionic Kéhler, the Riemann
curvature tensor R(«) must be of the form

R(a) = aRup(n) + Ro(a). (5.48)

Let us apply the Levi-Civita connection V¢ to both sides of (5.48) and let us take the
value of VR at some point m € M, on the orbifold M,

VOR(a) |m= aV*Rupn) lm +V*Ro() |m - (5.49)
Now, assume that for any « € (0, 1] the metric g(a) on M, is locally symmetric, i.e.,

VOR(@) |m ™ f(a,m) =0 (5.50)

as a function of a. We see that f(a, m) must be continuous and smooth for a € (0,1].
Furthermore

lim f(a,m) = lim VoRo(a) |;n= VIR | £ 0 (5.51)
a—0 a—0

21



because the Calabi metrics are not locally symmetric. Thus f(a, m) cannot be identically
zero and it is some non-vanishing function of «

fla;m) = (a=1)f(a,m) (5.52)

which is zero for & = 1 when we obtain the complex Wolf space X (n — 1) metric. Conse-
quently, f(a,m) = V*R(a) |, must not vanish for infinitely many rational parameters
«. For these « the metric g(«) is not locally symmetric and thus according to the Berger
theorem [29] the holonomy is Sp(n)-Sp(1). This has a very important consequence: For all
o’s for which the metric is not locally symmetric, our orbifold is not a quotient of X (n—1)
by some discrete subgroup of U(n + 1).

We do not know if the quaternionic riemannian orbifolds described in this section
are quotients of some compact quaternionic Kahler manifolds by a finite group. If so, the
manifolds in question would provide the first examples of compact, qauternionic Kahler
manifolds with not locally symmetric riemannian metrics. In for dimensions the answer
seems to be negative. Our orbifolds cannot be globally obtained by such quotient because
there are only two self-dual and Einstein metrics with positive scalar curvature: CP2 and
S* — both locally symmetric and homogeneous [18]. Thus no quotients of CP? or S* can
produce non-symmetric metrics on resulting orbifolds. This indicates that our orbifolds
are only locally some manifolds divided by a discrete group. It would also be interesting
to see if orbifolds described by different parameters o = ¢/p have a distinct geometry.

6. Conclusions

Our paper describes a new generalization of the old Marsden-Weinstein symplectic
reduction: The quaternionic reduction of quaternionic Kahler manifold with isometries.
We compare our quotient with the hyperkihler quotient of Hitchin et al. [7]. There are
two main motivations for studying such quotients. The first one comes from field theory
of N = 2 supersymmetric o-models. The minimal coupling of the Yang-Mills multiplets in
N = 2 globally supersymmetric o-models can be very well understood from the point of
view of hyperkahler quotient of hyperkahler manifolds by their triholomorphic isometries.
Hull et al. [6] analyze supersymmetric gauging of these models in great detail. Much less,
however, is understood in the case of N = 2 local supersymmetry. We believe that our
approach gives a new insight in that problem. We clearly see that the correspondence
between quaternionic and hyperkahler quotients, which allows for seeing the latter as the
A — 0 scalar curvature limit of the former, is precisely the correspondence between N = 2
local and global supersymmetric gaugings of a o-model manifold. The A — 0 limit is
then just the flat superspace limit (or decoupling limit) since the scalar curvature A of a
o-model manifold must be proportional to the Newton’s constant [3, 12].

The second motivation for our work was connected with the great success of the hy-
perkahler reduction method in constructing new examples of hyperkahler metrics. It is
indeed remarkable that a great many hyperkahler metrics can be obtained as simple quo-
tients of H® by the unitary groups. Our quaternionic reduction can be carried out in a very
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similar way. We saw that the Wolf spaces X (n) and Y (n) are such quotients of the model
quaternionic Kahler manifold — quaternionic projective space HP(n). Unfortunately it
seems to be rather difficult to find appropriate regular actions of many different isometry
groups which would act freely on the zero level set of their momentum mappings. We were
not able to apply our reduction process to construct any new compact smooth riemannian
quaternionic Kéhler manifold with non-symmetric metric. (All symmetric spaces were
classified by Wolf [20]). However we have constructed examples of quaternionic Kahler
riemannian orbifolds with non-symmetric metrics at all regular points. Not locally sym-
metric metric implies that our orbifolds are not the Wolf spaces divided by a discrete
group. We discussed the geometry of these orbifolds, their metrics away from singular
sets. In the o — 0 limit the metric g(«) approaches the Calabi metric. It would be
interesting to see and understand this limit from a topological point of view. Another
important question is again connected with o-models. Is it, for instance, possible to define
a consistent o-model action when the scalar o-model fields are differentiable maps from
coordinate space to some orbifold rather then manifold? How can one extend the usual
definition to include singularities, and what, if any, is the significance of these singularities
in the physics of such field theory? What is the change in geometry of orbifolds upon
renormalization? There are many more questions like these to be answered. Dixon et al.
[30] have shown that string propagation on orbifolds is perfectly consistent even without
the requirement that singularities could be removed by blowing up. Since the string action
can be viewed as a two-dimensional o-model, it is then a o-model on an orbifold.

Lately it has been shown [31] that in two dimensions N = 4 local supersymmetry
allows for the coupling of both hyperkahler and quaternionic o-models with positive or
negative scalar curvature. The action is conformally invariant and corresponds to the
SU(2) spinning string. It would also be interesting to see if one can replace a smooth
manifold by our riemannian quaternionic orbifold in this case. We hope to address some
of these problems in the future.
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