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On Strongly Inhomogeneous Einstein Manifolds

CHARLES P. BOYER KRZYSZTOF GALICKI BENJAMIN M. MANN

1. Introduction

There are few known constructions of compact inhomogeneous Einstein manifolds of
positive scalar curvature. The first explicit example of such a metric was introduced by
Page [P]. His construction was later generalized by Bérard Bergery [BB, Bes| to obtain
cohomogeneity one Einstein metrics on S2-bundles over certain Kahler manifolds. When
the dimension of M is even, this is the only known method that produces such Einstein
metrics explicitly. All other known even-dimensional examples come from Kéahler-Einstein
geometry. Here the only explicit examples are due to Sakane [Sa, Bes| who used a variant
of Bérard Bergery’s construction to obtain Kéihler-Einstein metrics of cohomogeneity one.
It was pointed out to us by Wang that the Einstein equations in Sakane’s construction
can actually be solved explicitly. Koiso and Sakane [KoiSal, KoiSa2] later generalized
this construction and showed the existence of inhomogeneous Kahler-Einstein metrics
of positive scalar curvature on many other compact complex manifolds. Their method
yields Einstein metrics of arbitrary cohomogeneity; however, we are not aware of any
explicit solutions to the Einstein equations with cohomogeneity higher than one. Tian and
Yau [TY] proved another existence result, that there are inhomogeneous Kéhler-Einstein
metrics on the del Pezzo surfaces CP2#k(—CP?) for 3 < k < 8.

When M is odd dimensional the only explicit examples of inhomogeneous Einstein
manifolds of positive scalar curvature with arbitrary cohomogeneity were obtained by the
authors in [BGM1, BGM2, BGM3]. All of these examples are 3-Sasakian manifolds. A
different construction of odd-dimensional inhomogeneous Einstein spaces is due to Wang
and Ziller [WZ1, WZ2]. They obtained Einstein metrics of positive scalar curvature on
certain torus bundles over products of Kahler-Einstein spaces. This construction is actually
quite explicit, but in order to get explicit inhomogeneous metrics one needs an explicit
inhomogeneous Kahler-Einstein metric on the base. Here the only such examples are
the Sakane’s metrics mentioned above which are of cohomogeneity one and thus yield
a cohomogeneity one metric in the Wang-Ziller torus bundle. A similar construction of
Einstein metrics on certain principal RP3-bundles over products of quaternionic Kihler
manifolds is due to Wang [W2].

Following Eschenberg [E1] one says that M is strongly inhomogeneous if M is not
homotopy equivalent to any homogeneous space G/H. In [BGM2, BGM3] we constructed
inhomogeneous Einstein metrics of positive scalar curvature on compact simply connected
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3-Sasakian manifolds (S(p), g(p)) in dimension 4n — 5 for all n > 3. The metrics obtained
there are all inhomogeneous as can be easily seen from the geometry of the construction.
The cohomogeneity of g(p) depends on p and is a number between 3n—7 and 0. The highest

cohomogeneity is realized by infinitely many g(p)’s in every dimension while the lowest is
U(n)
U(n—2)xU(1)"
are all diffeomorphic to Eschenberg’s bi-quotients of U(3) first introduced in [E1l] and
later generalized in [E2]. Furthermore, using a cohomology calculation of [BGM3] which
determined H*(S(p);Z) and a result of Eschenberg [E1] on 7-dimensional, homogeneous

spaces, we proved the following Theorem [BGM2, BGM3|:

THEOREM: There are countable subfamilies of pairwise homotopy distinct S(p) manifolds
each of which is a 7-dimensional, compact, simply connected, strongly inhomogeneous,
FEinstein manifold of positive scalar curvature.

realized by the homogeneous metric on In dimension 7 our S(p) manifolds

The positive scalar curvature Einstein metrics on S(p) are obtained explicitly. To our
knowledge these are the only explicit examples of cohomogeneity greater than one. Fur-
thermore, these are the first such examples of strongly inhomogeneous Einstein manifolds
in odd dimension. LeBrun [L] has pointed out to us that circle bundles over some del
Pezzo surfaces are also strongly inhomogeneous. It then follows from the results of Tian
and Yau [TY] and Wang and Ziller [WZ1] that they admit Einstein metrics of positive
scalar curvature. However, there is no known explicit construction for these metrics. In
addition, we do not know if the torus bundle examples over the manifolds constructed by
Sakane [Sa| can be shown to be strongly inhomogeneous.

While Eschenberg’s analysis of homogeneous spaces was restricted to dimension 7, the
cohomology analysis of the S(p) manifolds is complete in every possible dimension. Thus,
it is natural to ask if these 3-Sasakian examples give the first known explicit examples of
strongly inhomogeneous Einstein manifolds in higher dimensions as well. It is the purpose
of this note is to prove

THEOREM A: For all n > 2 there are countable subfamilies of pairwise homotopy distinct
S(p) manifolds each of which is a 4n— 5-dimensional, compact, simply connected, strongly
inhomogeneous, Einstein manifold of positive scalar curvature.

In the course of proving Theorem A we encounter certain homogeneous spaces which
we denote by M(a1,as). These manifolds topologically are higher dimensional generaliza-
tions of the 7-dimensional Aloff-Wallach manifolds [AW] and are defined in section three.
Theorem A is actually a Corollary of the following

THEOREM B: Let S(p) be any 3-Sasakian example constructed in [BGM3]. Then either
1. S8(p) is strongly inhomogeneous,

or
2. 8(p) is homotopy equivalent to some M(a1,as).

The S(p) examples and their main properties are recalled in section two while Theo-
rem B is proved in section three and Theorem A in section four. Actually, the conclusion
of Theorem B holds for any space X that is the topological quotient of the Stiefel manifold
V5, 5 of 2 frames in C™ by a free circle action, where 71 (X) = 0 and 73(X) = Z. Therefore,
the evident generalization of Theorem B also applies to the 7-dimensional bi-quotients of
SU(3) constructed by Eschenberg in [E1] and, more generally, to the bi-quotients of U (3)



considered in [E2]. Hence, not only does Theorem B allow us to extend our earlier results
on the existence of strongly inhomogeneous Einstein manifolds to higher dimensions but
also sharpens the strongly inhomogeneity results of both [E1] and [BGM3] (while Eschen-
berg actually proves Theorem B in dimension 7, he does not state this stronger result
explicitly). The implications of Theorem B in dimension 7 are discussed in section five.

We would like to thank M. Wang for bringing Sakane’s paper to our attention and
for pointing out that the Einstein equations arising in his construction can be solved
explicitly. We would like to thank C. LeBrun for telling us about his examples mentioned
above and to thank the referee both for bringing reference [O] to our attention and also
for making other suggestions which have improved this note. Finally, the first and the
second named authors would like to thank the Erwin Schrodinger International Institute
for Mathematical Physics in Vienna for their hospitality. The final version of this article
was completed during their visits there.

2. The Examples

To begin we recall some relevant facts from [BGM3].
DEFINITION 2.1: Let n > 3 and p = (p1,...,Pn) € Z'} be an n-tuple of non-decreasing,
pairwise relatively prime, positive integers. Such a sequence is called admissible. Let S(p)
be the left-right quotient of the unitary group U(n) by U(1) x U(n —2) C U(n)? =
U(n)r x U(n)g, where the action is given by the formula

P1

T
(7,B) . I, O
2.2 W — - w ( o IB) .

7Pn
Here W € U(n) and (7,B) € U(1) x U(n — 2).
Equivalently, S(p) is the quotient of the complex Stiefel manifold V‘,CL,2 of 2-frames in

C™ by the free circle action given in equation 2.2. Thus, there is a fibration sequence

f
2.3 St — VE, >5(p)ﬂ>351,

n,

where f(p) is the classifying map of the associated principal circle bundle over S(p).
Furthermore, since V‘S’Q is 2n — 4 connected, 2.3 implies that

0 if:=0,1,
2.4 T (S(p)) = {Z if 1 =2,
0 if2<7<2n—4.

THEOREM 2.5: [BGM3| Let n > 3 and p be an admissible sequence. Then S(p) is
a compact, simply connected, (4n — 5)-dimensional smooth manifold which admits an
Einstein metric g(p) of positive scalar curvature and a compatible Sasakian 3-structure.
In addition, S(p) also admits a second Einstein metric of positive scalar curvature, g;(p),
which is non-homothetic to g(p). Furthermore, both (S(p),g(p)) and (S(p),g1(p)) are
inhomogeneous Einstein manifolds as long as p # (1,...,1).
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In [BGM4] the authors studied the automorphism groups of certain hypercomplex
structures Z(p) on the Stiefel manifolds VSJ. Using Theorems C and 3.21 of [BGM4] one
can easily determine the connected component of the 3-Sasakian isometry group Iy of
(S(p),9(p)). The 3-Sasakian isometries are isometries of g(p) which commute with the
action of Sp(1) defined by the 3-Sasakian vector fields. Using a result of Tanno [T}, the
connected component of the full isometry group can then be determined. We have
THEOREM 2.6: Let Iy be the group of 3-Sasakian isometries of (S(p),g(p)) and let k
be the number of 1’s in p. Then the connected component of Iy is S(U(k) x U(1)"~F),
where we define U(0) = {e}. Thus, the connected component of the isometry group is
the product Iy x SO(3) if the sums p; + p; are even for all 1 < i,j < n, and Iy x Sp(1)
otherwise.

In the case that p has no repeated 1’s, the cohomogeneity can easily be determined,
viz.
COROLLARY 2.7: If the number of 1’s in p is 0 or 1 then the dimension of the principal
orbit in §(p) equals n + 2 and the cohomogeneity of g(p) is 3n — 7.

3. Homotopic Homogeneous Spaces

In this section we assume that S(p) is not strongly inhomogeneous; that is, we assume
that there is a homotopy equivalence

3.1 h:S(p) — A/B,

where A is a compact Lie group and B is a closed subgroup. Our main purpose here is
to deduce as much as possible about A/B under this assumption; more precisely, to prove
Theorem B. The 7-dimensional case is discussed in section five so we assume n > 3 for the
remainder of this section. To begin, using arguments similar to Eschenberg [E: §4] and
equation 2.4 one can assume that

G

3.2 A _
) B K xSU

where both G and K are compact, simply-connected, semi-simple Lie groups and K x S*
is a closed subgroup of G.

Furthermore, since n > 3, equation 2.4 implies there is the following short exact
sequence

3.3 0 — m3(K) —— m3(G) — 0.

Thus, G and K have the same number of simple factors and we have

a4 G Gix--xG
) K_K1X"-XKZ7

where each G; and K is a compact, simple, simply-connected Lie group for 1 <4¢,j5 </.
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Since S' ¢ K x S! C G is a subgroup and the map in 3.1 is a homotopy equivalence
we have the following commutative diagram classifying principal circle bundles:

St St
v, 6/K
3.5
h G
S(p) — RxsT
f(sP)) f(G,K)
id
le — le .

Here m1 (V5 5) = m2 (V5 ,) = m(G/K) = m3(G/K) = 0 and h is a homotopy equivalence
between simply-connected spaces so f(S(p)) ~ f(G, K) o h and both circle bundles in 3.5
are classified by the same element

1€ H*(S8(p); Z) = [S(p), Bs1] 2 Z.
But this implies that there is a homotopy equivalence of the total spaces

3.6 h:V5, — G/K.

n

LEMMA 3.7: G/K is diffeomorphic to V5 , = U(n)/U(n — 2) for n > 3.

PROOF: The lemma is a direct consequence of results of Onishchik, specifically Theorem
12 and Theorem 13 of chapter seven of [O]. We are grateful to the referee who pointed
out to us that the techniques of [O] actually classify all homogeneous spaces homotopy
equivalent to V§ , although this is not explicitly stated in [O]. [

n
DEFINITION 3.8: For all n > 3 let (a1,a2) be a pair of relatively prime integers with
a1 > ay and M (a1, az) be the quotient of the unitary group U(n) by U(n — 2) x S where
the action is given by the formula

(B,7) A(r) O
3.9 wW— W< o B).

HereV\\,’GU(n),]B%EU(n—2),TGSl,andA(T):(T1 0 )

0 79
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REMARK 3.10: Aloff and Wallach first studied the M (a1, a2) manifolds in dimension 7
and their main result was to prove they had metrics of positive sectional curvature [AW].
Later, Wang [W1] showed that the 7-dimensional Aloff-Wallach manifolds also supported
an Einstein metric and Kreck and Stolz [KrSt] analyzed their homeomorphism and diffeo-
morphism types. However, we do not know whether in higher dimensions the manifolds
M(ay,a2) have either metrics of positive sectional curvature or Einstein metrics.

PrRoOOF OF THEOREM B: Lemma 3.7 implies that the target of the homotopy equivalence
h in equation 3.1 is

G . Um
51 KxSt U(n-2)xS8V

where U(n — 2) x S is a subgroup of U(n). Since the S* factor acts as a subgroup which
commutes with the U(n — 2) factor, up to conjugation, the most general action one can
have is given by equation 3.9, where a; and as are relatively prime. ]

4. Homology Calculations

In order to prove Theorem A of the introduction we need to compare the cohomology
rings for S(p) and M(aq,as). The following was proved in [BGM3].

THEOREM 4.1: Let p be an admissible n-tuple. Then, as rings,

Z[bs]
(b5 = 0]

4.2 H*(S(p);Z) = ( ®E[fzn_1]>/7€(8(p)),

where the subscripts on by and fa,_1 denote the cohomological dimension of each gen-
erator. The relations R(S(p)) are given by o,_1(p)b3~' = 0 and fo,_1b3 "' = 0. Here
0n_1(p) is the (n — 1)% elementary symmetric polynomial in p.

COROLLARY 4.3: H*"2(8(p); Z) = Z,, ,(p) for all admissible sequences p.
We now prove that the M(a, a2) manifolds have similar cohomology rings.

THEOREM 4.4: For all pairs of relatively prime integers a; and ay with a1 > as

Z[bs]
(b5 = 0]

4.5 H*(M(ay,a2);Z) = ( ®E[f2n—1]> /R(M(a1,asz)),

where the subscripts on bs and fs,_1 denote the cohomological dimension of each gen-
erator. The relations R(M (a1, az)) are given by a(ay,az)b3 ' = 0 and fon_1b5~" = 0.
Here

n n—i i n+1 ifalzagzl,
4.6 alar,as) = E Ay Qg = gntl_gntl .
(a1, a2) , 172 1 2 otherwise.
=0 a1—az2

COROLLARY 4.7: H*"72(M(ay,a2); Z) = Za(ay,a5)-
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The notational convention in Corollary 4.7 is that Zy = Z and Z, = 0. This occurs
only when «(1,—1) = 0 (if n is odd) or a(1,—1) = 1 (if n is even). These are the only
cases when H?""2(M(ay,az);Z) is not a finite cycle group. If (ai,a2) # (1,—1) then,
when n = 3, one can assume that both a; and as are positive. This is not possible in
higher dimensions; however, we can and will assume that |aq1| > |as| and a; > 0 whenever
n > 3.

PrOOF OF THEOREM 4.4: When n = 3 this computation is carried out by Kreck and
Stolz [KrSt: section 4] and the generalization for n > 3 is straightforward. |
When n > 3 Theorem A follows from Theorem B and Corollaries 4.3 and 4.7 as

0n—1(P) grows linearly in the entries of p whereas (a1, as) grows to the n* order in a;
and ag (even if a; and ag differ in sign).

5. The Seven Dimensional Case

Eschenberg constructed the first examples of inhomogeneous metrics of positive sec-
tional curvature on certain compact simply connected 7-dimensional circle bi-quotients of
SU(3) [El]. In order to prove that these examples are inhomogeneous he showed

THEOREM 5.1: Let M7 be a free circle quotient of SU(3) and H*(M";Z) = 7Z,, where
r =2 (mod 3). Then M is strongly inhomogeneous.

The proof of Theorem 5.1 given in [E1] actually implies Theorem B in dimension 7
although this is not stated explicitly (see [E1l: section 4 and appendix 3|, [E2: pp.163-
164]). To see that Theorem B is indeed stronger note that Theorem 5.1 does not show
the strong inhomogeneity of S(1,1,4) while Theorem B and a simple calculation using
the quadratic formula do imply that S(1,1,4) is strongly inhomogeneous. Moreover, as
a(a1,a2) increases quadratically when n = 3, Theorem B implies

PROPOSITION 5.2: Let d run over the positive integers. The families
5.3 {8(1,1,3d)} and {S(1,1,3d+ 1)}

must each contain infinitely many homotopy distinct strongly inhomogeneous elements.

We can also apply Theorem B to obtain strong inhomogeneity results for some bi-
quotient manifolds constructed by Eschenberg [E1]. For example, using the notation of
[E1], the bi-quotient M 1 22 has the property that H*(M; 1,2,9;Z) = Zg so that, while

Theorem 5.1 does not apply in this case, Theorem B implies that M; 1 2 2 is also strongly
inhomogeneous. More generally, we have

PROPOSITION 5.4: Let d run over the positive integers. The family

5.5 {Mgi1,4+1,d.4}

of Eschenberg bi-quotients must contain infinitely many homotopy distinct strongly inho-
mogeneous elements.

PROOF: It is easy to check that (d+1,d+1, d, d) satisfies the hypothesis of [E1: Proposition
2.1] so each element of 5.5 is a smooth manifold. Each element of 5.5 is topologically the
quotient of a free circle action on SU(3) with 71 (Mgy1,d41,4,4) = 0 and mo(Mg41,d+41,d,d) =
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Z. Therefore, the evident generalization of Theorem B extends to cover these elements.
Furthermore, [E1: Proposition 3.6] shows that

5.6

H*(Mgi1a11.0.4;7) = Zedss

and, as 6d 4+ 3 increases linearly in d, the proposition follows from Corollary 4.7. ]

None of the strongly inhomogeneous manifolds in Propositions 5.2 and 5.4 can be

shown to be strongly inhomogeneous via Theorem 5.1. However, both results follow from
the discussion of the U(3) bi-quotients U, , introduced in [E2] and our remark that the
proof of Theorem 5.1 in [E1] implies Theorem B in dimesions 7.
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