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Quaternionic Reduction and Quaternionic Orbifolds

KRzYsZTOF GALICKI AND BLAINE H. LAWSON, JR.

0. Introduction

In recent years there has been a growth of interest in riemannian manifolds with
Sp1-Spn holonomy, or so-called quaternionic Kahler manifolds. One reason for this is that
the classical o-model, which consists of the energy functional for maps f: ¥ — X of a
compact riemannian 4-manifold into a riemannian manifold X, admits locally an N = 2
supersymimetric extension only when X is a quaternionic Kahler space with non-zero scalar
curvature.

From the classification of Berger [B] we know that there are very few holonomy
groups possible on non-locally-symmetric, irreducible riemannian manifolds. The Kahler,
hyperkahler and quaternionic Kdhler manifolds constitute a large proportion of the inter-
esting cases. Whenever a Kahler or hyperkahler manifold X carries a non-trivial connected
group H of automorphisms, there is a process called the Marsden-Weinstein reduction for
constructing a new Kéhler (or hyperkéhler) space [MW, H1].

The main part of this note is to present an analogous reduction process for quater-
nionic Kahler manifolds. We shall show that there exists in this case a certain “momentum
mapping” which reduces to the classical one when the scalar curvature s of the space is
zero (and the metrics becomes hyperKéhler). When x # 0, this momentum mapping
is uniquely defined for any compact group of automorphisms H. Its zero set Zg is H-
invariant and the quotient Zp/H is again a quaternionic Kéhler manifold at all regular
points.

It is interesting that the momentum mapping has quite different features in the two
cases: K =0 and k # 0. (Since the metric on any quaternionic K&hler manifold is always
Einstein, x is constant). When x = 0, the map is defined by integration. The constants
of integration introduce ambiguities and for non-semi-simple Lie groups the map cannot
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always be made H-equivariant. When « # 0, the map is defined by differentiation, and it
is always H-equivariant. Moreover, only the zero-momentum level has global meaning in
this case.

Beginning with the classical quaternionic Kahler manifolds, namely quaternionic pro-
jective space P, and considering S'-actions, one can produce by this method many com-
pact spaces with Spy-Sp, holonomy. These spaces are often non-trivial riemannian orb-
ifolds. (By “non-trivial” we mean that they are not the quotients of the known spaces by
finite automorphism groups.)

A riemannian orbifold is, by definition, a space whose local structure is that of a
riemannian manifold divided by a finite group of isometries. The metric singularities on
such spaces are of the simplest kind. (Note that even among 2-dimensional cones only

those whose unit circle has length of the form 27/n for some n € Z*, are riemannian
orbifolds.)

For each integer k£ > 1, we show that there exists an infinite family of distinct com-
pact, simply-connected, quaternionic Kahler orbifolds of dimension 4k. This result is of
particular interest when k¥ = 1. Here we have an infinite family of compact, simply-
connected riemannian orbifolds of dimension 4 each of which is Einstein, self-dual and of
positive scalar curvature. By a well-known theorem of Hitchin [H1], the only compact
4-dimensional manifolds admitting such metrics are the sphere S* and complex projective
space P4. However, if we allow these minor singularities, which regularize by “unfolding”,
we see that many examples exist. Each of these spaces has the topological type of the
Thom-space of a complex line bundle over P%.. Every line bundle appears infinitely often in
the family. These spaces are differentially equivalent, as orbifolds, to weighted projective
spaces. It seems that the study of the o-models for such spaces would be quite interesting.

The construction presented here is an abstraction to the general setting of the work
done by the first named author [G1]. The case considered in [G1] is the most basic and
already gives all the interesting examples.

The authors gratefully acknowledge many useful and stimulating conversations with
Martin Rocek during the preparation of this work.

1. Definitions

We begin by recalling the basics of quaternionic Kéhler geometry (cf. [I, A, S]). Let
X be a smooth 4n-dimensional manifold (n > 1). We say that X is almost quaternionic
if there is a 3-dimensional subbundle G C Hom(T X, T X) with the following property: At
each point x € X there is a basis {Jy, Ja, J3} of the fibre G, such that:

Jz’ o) Jj = —(5ijid —+ eijk:Jk: . (1.1)
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In other words, R -Id & G is, at each point, a subalgebra isomorphic to the quaternions.

Suppose now that X carries a riemannian metric adapted to the quaternion structure
in the sense that each J € G is orthogonal, i.e.,

(JV,IJW) = (V,W) (1.2)

for all J € G and all VW € T,X at all points z € X. Adapted metric always exists.
Given an adapted metric we obtain an isometric bundle embedding

G C A*’T*X (1.3)
which associates to each J € G, the non-degenerate 2-form w defined by
w(V,W) = (JV,W). (1.4)
for V\W e T, X.

Suppose {J1, Jo, J3} are locally defined smooth sections of G which satisfy (1.1) at
each point. Then these form an orthonormal frame field for G in the standard metric
(A, By = 5-trace(A*B) on Hom(TX,TX). Let {w;}i=1,2,3 be the basis of 2-forms corre-
sponding under (1.4). The associated exterior 4-form

3
Q:Zwi/\wi (15)
=1

is invariant under change of frame field and thus globally defined on X. It is non-degenerate
in the sense that Q" is nowhere vanishing on X. Thus, if d€2 = 0 there are strong
consequences in H*(X;R).

DEFINITION 1.6: The Riemannian manifold X (n > 1) together with G is quaternionic
Kahler if VQQ = 0 where V denotes the Levi-Civita connection.

This is equivalent to the hypothesis that the local holonomy group of the metric at
point z is contained in the subgroup:

{g € SO4n(TmX) : g*Qm = Qz} = Spl X Spn/ZZ d:ef Spl'spn-

The hypothesis V€2 = 0 clearly implies that d€2 = 0. It is a basic fact that if X is
quaternionic Kahler it is Einstein. We suppose from this point on that X is quaternionic
Kéhler. Let {w;,w2,ws} be a local orthonormal frame field for G C A2T*X as above.
Then from (1.5) we have that
3
Z(sz) VAN wW; = 0
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from which it follows that .
Vw; = Zaij Q wy, (L.7)
j=1
where the «;; are 1-forms which satisfy
05 = —0y; VZ,] = 1,2,3 . (18)

This means in particular that the subspace I'(G) C I'(A2T*X) is preserved by the rieman-
nian covariant derivative. The matrix

0 a2  a13
A=| —a;12 0 a3 (1.9)

—ai3 —az3 0
is the connection 1-form with respect to the local frame field {w1,ws,ws}. The curvature
of this induced connection represents a component of the Riemann curvature tensor R

and is given by
R=dA - ANA.
3

Using the facts that dw; =) =1 Qij AN wj and d?w; = 0, one deduces that
Rij = doij — Z i Ao = A ZGijkwk (1.10)
1 k

for some constant A. (One uses here the full structure of the forms {w;,ws, w3} and the
fact that n > 1.) Note that this equation means that

(R(w;),wj) = )\Zéijkwk (1.10%)
k

for all 4, 5. Since G is an oriented 3-dimensional bundle, there is a canonical identification
SkewEnd(G) = G via the cross-product. Using this identification we can consider R as a
map

R: A’TX — SkewEnd(G) =G C A’TX

and, as such, equation (1.10") simply states that
R = Am, (1.11)
where 7 denotes pointwise orthogonal projection of A2T'X into G.
By our assumption each of the subbundles in the orthogonal splitting
NTX=Gag"
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is preserved by the riemannian connection, and therefore also by the curvature tensor of
ATX
R: A’TX — SkewEnd(A*TX)

which is given as follows. Let

(-): A’TX —> SkewEnd(TX)
be the canonical identification and let

R: A’TX — SkewEnd(TX)

denote the Riemann curvature tensor of TX. Then for ¢, € A2TX we have that

Ry(¥) = [Ry » 9], (1.12)

where [ , -] denotes the commutator of endomorphisms. For any ¢, R, maps G into G
(and G+ into G1), that is, we have a decomposition

R:RQGBRQL,

where the first component is just the curvature tensor of G discussed above. Hence,
equations (1.11) and (1.12) tell us that

Ry, ] =Ar o, ¥] VoeA?TX and Vo €g.
Therefore, for any ¢ € A2T X, we have that
Ry = Am ¢ + ¢y,
where ¢, commutes with the endomorphisms {Ji, J2, J3} of G. This means that
cp € 8P, C G,

where sp,, denotes the skew-endomorphisms commuting with G. Suppose now that ¢ € G
and ¢ = c,. Then from the symmetry of the Riemann curvature tensor, we have that

19 = (¥, Rp) = (Ry , ¢} = A1 9, ¢) =0.

Hence c, = 0, and we conclude that as a symmetric endomorphism R : A’TX — A?TX,
the Riemann curvature tensor has the property that

R |g= Mdg . (1.13)
It is straightforward to show that A is a positive multiple of the scalar curvature x on X.
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Consequently, if x = 0, then G is flat and the metric is hyperKéhler(Sp,-holonomy).
We are interested here in the case where x # 0, for example, on quaternionic projective
space .

Note that in dimension 4, the condition that V{2 = 0 is trivially satisfied since €2 is the
volume form. Nevertheless, a good extension of the concept of being quaternionic Kahler
does exist for dimension 4. In this case the decomposition (1.12) corresponds exactly to
the decomposition A2T'X = A, ® A_ into self-dual and anti-self-dual 2-forms.

DEFINITION 1.14: An oriented riemannian 4-manifold is called guaternionic Kahler if
condition (1.13) holds (where G = A, ). This condition is equivalent to the assumption
that X is Finstein and anti-self-dual.

For further details on quaternionic Kéhler manifolds, see [A, S, I, W].

2. The Quaternionic Momentum Mapping

We shall now describe an analogue of the Marsden-Weinstein reduction for the case of
quaternionic Kéhler manifolds. To do this we first consider the spaces QP(G) = I'(APT*X ®
G) of smooth exterior p-forms on X with values in G. The connection given on G induces
a “de Rham” sequence

Q°(6) Y=Y al(g) 25 02(g) &s - . (2.1)
such that
d¥ od¥ (f) = R(f) (2-2)

for f € Q°(G). (See [BL].)
Consider now the Lie group
Aut(X) = {g € Isom(X) : ¢g*Q=Q}

and its Lie algebra
aut(X)={V e K(X): LyQ =0}

embedded naturally in the space K(X) of Killing vector fields on X. (Here Ly denotes
the Lie derivative.) To each V € aut(X) we associate the G-valued 1-form

Oy € Q1(9)

defined in terms of a local frame wy, wy, w3 by

Oy = Z(z’vwi) ® w; (2.3)
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where 7y, denotes contraction with V. Clearly ©y remains invariant under local change
of frame field (i.e., under local gauge transformations).

THEOREM 2.4: Assume that the scalar curvature of X is not zero. Then to each
V € aut(X) there corresponds a unique section fy € Q°(G) such that

Vi =06y . (2.5)

In fact, under the canonical bundle isometry o : SkewEnd(G) — G, fv is given explicitly
by the formula

fv= iﬂ(ﬁv - V). (2.6)

PROOF: In light of the explicit formula (2.6) the proof could be left as an exercise for the
reader. However, there is an approach to this theorem which proceeds in analogy with
the classical (K&hler) case. It was by this route that the authors were led to the result.
We present it here because it gives insight into the problem and may be of use to people
searching for other generalizations of the momentum map. Moreover, in this argument we
shall clearly see exactly where the classical and non-classical cases diverge.

Consider the "de Rham” sequence (2.1). We are given Oy € Q!(G) and want to solve
the equation dV fir = Oy. Differentiating this equation and using (2.2) we find that

R(fv)=dVd" fy =d" Oy .

The main point now is that if A # 0, then the map R: G — A?2TX ® G is an injective
bundle map. Therefore equation (2.5) can be solved uniquely for fi provided that d¥ Oy
lies in the subbundle R(G) C A2TX ® G. This “compatibility condition” is guaranteed by
the invariance of the form  under V.

Let us carry out this argument explicitly in terms of a local orthonormal frame field
{w1,wa,ws} for G. We write
fv =Y fiws
i

and recall that
Viv =Y (dfi+) fiuis) ®w; .

J

Hence, equation (2.5) can be reexpressed as
dfj + Z fiaij = ’I:ij. (27)
i
Applying d to this equation and recalling that R;; = da;; — Y o A oy, we find that

Z fiRW = d(?;ij) - Z(val) A Q4 déf \Ijj

)



From (1.10) we deduce that for each j

)\Zfieijkwk = \Ilj. (28)
i,k

Since A # 0 this equation can be solved uniquely for {f;} provided that {¥;} is of the
form ¥; = ) ¢;jpwy where cji = —cg;j, i.e., provided that

ng'/\‘lfj =0.
J

This last equation follows easily from the condition Ly (3-w3?) = 0.

To get the explicit form of the solution, note that

vaj = d(iij) -+ ’iv(dwj) = d(iij) + ZV(Z (e77" A ‘Uk) =
k

= Z Qjk (V)wk + d(iij) — Z Qe N (ivwk) = vaj + \Ifj.
k k

Replacing ¥; by (Ly — Vy)w; in (2.8) and solving for fy yields the formula (2.6). [

We observe now that by the uniqueness in Theorem 2.4, the map V — fy transforms
naturally under the group of automorphisms. This means specifically that for g € Aut(X)
and V € aut(X) we have

fo.ovy = 9x(fv) (2.9)

where g.(fv)(z) def §(fv(9g7*(z))) and where g denotes the map induced by g on the
bundle G C A>T X. Note also that g.V = Ady(V). Hence, (2.9) means that the diagram

aut(X) Ady aut(X)
s lf
Q°(G) I QG)
commutes.

Suppose now that H C Aut(X) is a compact Lie subgroup with corresponding Lie
algebra b.

DEFINITION 2.10: The momentum map associated to H is the section f of the bundle
h* ® G = Hom(h, G) whose value at a point x is the homomorphism V. — fy (x).(Here b
denotes the trivial h-bundle over X ).




From the equivariance above we see immediately that the momentum map is H-
equivariant. Since the action of H in the bundle h* ® G is linear on the fibers, it preserves
the zero section. Consequently the set

Ze ¥ izeX: fz)=0} (2.11)

is H-invariant.

This momentum mapping (in the case when scalar curvature A # 0), differs from the
standard symplectic one in two essential ways. Here there are no constants of integration;
in fact we solve by differentiation rather then by integration. This gives us the group
invariance, which does not hold in general in the symplectic case. On the other hand, the
only naturally defined “level set” of this mapping is the set Zg, where f = 0.

3. Quaternionic Reduction

The main result of this section is the following:

THEOREM 3.1: Let X be a quaternionic Kahler manifold with scalar curvature k # 0.
Let H C Aut(X) be a compact subgroup with momentum map f. Let Z;I( denote the
H-invariant subset of Zy = {x € X : f(z) = 0} where f intersects the zero section
transversally and where H acts freely. Then Z?{( /H equipped with the submersed metric
(i.e., the one which makes the projection 2% — ZX/H a riemannian submersion), is
again a quaternionic Kahler manifold.

Corollary 3.2: Let X be as above and suppose H = S C Aut(X) is a closed 1-parameter
subgroup generated by a vector field V € aut(X). If V, # 0 at all points x € Zg, then
Zy/H is a compact quaternionic Kahler orbifold.

PRrROOF OF 3.1: It will suffice to consider the case when H = S'. The general case is quite
similar. Let V be the Killing vector field generating the free S-action on Z¥. Then V-

is the field of horizontal planes for the submersion 2% -+ ZX/H. Furthermore, at any
point x € Z¥, we have that

J1V,JoV and J3V  are normal to Zx, (3.3)

where Ji, Jo, J3 are a basis of G, as in §1. To see this, let {w;} be a local frame field for
G as above, and recall that fyy =Y fiw; where V f; = iyw;. Consequently

J

at each point of the set where fiy = 0. This establishes (3.3) and furthermore shows that
the subset of Zgz where fy intersects the zero-section transversally is precisely the subset
where V # 0.



Let Q = ). w; A w; be the parallel 4-form on X where w;(V, W) = (J;V, W), and let
Q) denotes the restriction of 2 to ZX. From (3.3) we see that

ivQ = 0. (3.5)

Hence, Q) is a horizontal H-invariant 4-form, and so it descends to a form €2z on Z}I( /H
with T*Qpg = Q.

Note from (3.3) that at any point 2 € Z& we have an orthogonal decomposition
T,X = V2oR V, ®span{J;V,}. It follows that the plane field V* is {J1, Jo, J3}-invariant.
This gives us a H-invariant almost quaternionic structure on V+ which descends to an
almost quaternion structure on Z;I( /H, whose associated 4-form is Qg. Hence, it is only

necessary to prove that
VQg =0.

To do this, we assume that Wy, ..., W4 are smooth vector fields on Zﬁ /H and we let
Wo, ..., W4 denote their unique horizontal lifts to Z}I(. We want to show that

(VWOQH> (W17 SRS W4) =0.
This can be rewritten as
4
WO(QH(Wl, W4)) =3 Qu(Wi, ooy Vi Wi, .., Wa)
1=
which is equivalent to the equation
—_— ~ o~ —_— 4 ~ o~ —_
Wo (Q(Wl, ...,W4)) =3 QW eee, Vit Wi o, W) - (3.6)
=1
Now it is a consequence of the O’Neill formulas [ON] that
~ _——-H
VWi = [V Wi

~ H
where V denotes the covariant derivative on Z¥ and () denotes orthogonal projection

onto VL. Since the form € is horizontal we can rewrite (3.6) as

—~

4
Wo (Q(Wl,...,m)) = W, ..., Vi Wi, ... W)
=1

and we may clearly drop the tildas on the 2’s since Q is just the restriction of €2 to Z}I(.
Now it is easy to see from the fact that w;(W, W') = (J;W, W’), that the following is true.
Fix z € Z¥ and choose vectors Uy, Us, Uz € (V)7 .Then for any U € T, X we have that

Q(Uy, Uy, Us, U) = Q(Uy, Uy, Us, UR).
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It is a fundamental fact that

V= (Vi)

T
where V is the riemannian connection on X and () denotes orthogonal projection onto

T, 2Z%. Hence, we can rewrite (3.6) as:

4

Wo (Q(Wl, ...,’v174)) =N Wi, ..V Wi, . Wa) .
=1

This equation is a direct consequence of the hypothesis that
VQ=0

on X. This proves the theorem in dimensions greater than 4. In dimension 4 one could
compute directly using fundamental equations for submersions and immersions. We shall
present an alternative proof which uses the moving frame and works also in dimension
four.

Set X' = ZX/H and let
i: ZXcX and w: ZX — X'

denote the inclusion and projection maps respectively. Our first observation here is that
the standard restriction on 2-forms gives us a bundle map G — ¢*G which, along
the submanifold ZX% is a bundle isometry up to homothety, i.e., an orthonormal basis
{wi,wa, w3} of G at x € ZX restricts to an orthogonal basis {i*w1,i*ws,i*w3} with
|li*w;]|*> = (n — 1)/n for all j (where 4n = dimX). The forms {i*w;} are horizontal for
the submersion 7, and by assumption the bundles G and therefore also :*G are preserved
by the S'-action. Hence, there is a bundle G’ of 2-forms which determines a topological
quaternionic Kahler structure on X’ and has the property that

G = 1*G. (3.7)

(All of the above is easily verified using the relationship of the w;’s with the J;’s.) Note
that when dim(X’) = 4, we have G’ = A% .

Fix a point z € X' and choose a smooth orthonormal basis {w],w},ws} of G’ in a
closed neighborhood U of z. Pulling back by 7* and using the isomorphism (3.7) we see
that there is a pointwise orthonormal basis {&1, @2, w3} of sections of G defined along the
set 71 (U) C ZF such that *&; = 7*w] for each j. (We ignore the scale factor \/n/(n —1)
here.) A standard and easy argument now shows that there exists an orthonormal basis
{w1, wa, w3} of sections of G defined in a neighborhood of 7~ 1(U) in X, such that

71'*(,();- =1'w; for j=1,2,3. (3.8)
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At this point we shall specialize to the remaining case where dim(X’) = 4. (The
argument can be trivially generalized to all dimensions.)

The Levi-Civita connection on 2-forms preserves the sub-bundle and can be written
as

3
Vo =Y ap@w, =123,
k=1

where the «jj are 1-forms which satisfy: o = —ag;. (See (1.7).) The sub-bundle G’ =
A2+ C A? is also preserved by the Levi-Civita connection of X’ and similarly expressed:

3
Vw;-:Za;-k(@w;g, j=1,23,
k=1

ro_
where o, = —ay;.

From the symmetry of the Levi-Civita connection we have the following fundamental
identities

3 3
dw; = Zajk Awg and dw) = Za;k A wy, (3.9)
k=1 k=1
for each j. Since both d and exterior multiplication commute with * and 7*, the equations
(3.8) and (3.9) imply that

3
Z(ﬂ'*a;k —i*ajp) Am*w, =0 for j=1,2,3. (3.10)
k=1

We claim that equation (3.10) implies that
TGy, = i*aje  for all g, k. (3.11)

To begin we observe that the 1-forms 4*a;; must be “horizontal”, i.e., their restrictions
to the fibres of the map 7 must be zero. (This follows easily from (3.10) and the linear
independence of the forms W*w;-.) Hence, at any point T € Z}I(, all the forms appearing in
(3.10) are supported in the horizontal 4-plane, and we are reduced to the following linear
algebraic statement which can be formulated downstairs at =z = 7(z). Let Ay, A3, A3 be
1-forms on T, X’. We want to prove the following assertion.

Y GuAiAwp =0 for 1<j<3 = A=A, =A3=0. (3.12)
k1l

This is a system of 12 equations in 12 unknowns. Given a Kahler-type form w(V, W)
(JV,W) as above and a 1-form A, we note that: x(AAw) = Ao J where (Ao J)(V) =
A(JV). Hence, the first equation in (3.12) can be rewritten in terms of the endomorphisms
{Jl, Jg, J3} as

j(A) = ZejklAl o Jk = 0.

lk
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Writing out the coefficients of the A;’s in 3-successive blocks, the operator J can be
expressed in block matrix form as:

0 Jz  —Ja
—-J3 0 Ji
Jo —=Ji 0

This is easily seen to have non-zero determinant, and our assertion (3.11) is proved.

The condition that X be quaternionic Kahler implies that

dOzjk - Zaﬂ N = )\Zejklwl, for all 7,k
l l

for some constant A. (See(1.10).) Restricting to Z3& and using equations (3.8) and (3.11),
we see that

d(m*ajy) — Zw*a;l AT ay, = A Z €T wy, forall j, k.
I I
Since 7* 1is an injection, this implies that

R}y = dagy, — Za;'l A agy, = )\Zejklwl', for all j, k
1 !

As observed in (1.13), this means that the Riemann curvature tensor R : A2 — A2
has the property that R | A2 = Ald AZ - This means precisely that X’ is Einstein and

anti-self-dual (or self-dual if one reverses the orientation of X). ]

PROOF OF 3.2: It is an immediate consequence of (3.4) that the transversality hypothesis
for fy is satisfied at all points x € Zgy where V,, # 0. Hence, the set

zL Y ireZy: V,#£0)
is a smooth, H-invariant submanifold. We are assuming here that 2%, = Zg. The action

of H = S on Zp is therefore locally free, and the quotient Zg/H is an orbifold with a
smooth quaternionic Kahler metric at all regular points. ]

In fact, this metric extends across the singularities to make Zy/H a riemannian
orbifold. This is a consequence of the following general fact:

PROPOSITION 3.13: Suppose S! acts locally freely and by isometries on a riemannian
manifold Z. Then the quotient space Z/S' inherits uniquely the structure of a riemannian
orbifold with the property that at non-singular points the projection = : Z — Z/S! is
a riemannian submersion.

13



PROOF: Fix p € Z and let N, denote the normal space to the orbit of S* through p. (Since
the action is locally free, every orbit is a smoothly embedded curve.) Fix an orthonormal
basis {v1,...,vp_1} of N, and consider the map ¥ : R*~! — Z given by

n—1

U (21, ey Tpo1) = expp(z zjv;),

=1

where exp,, denotes the exponential map of Z at p. For € > 0 sufficiently small, this map
gives a smooth embedding of the disc D = {z € R*™! : ||z|| < €}. At regular points p,
i.e., points where the isotropy group G, = {g € S* : g¢(p) = p} is trivial, the composition
noW: D. — Z/S! gives a smooth local coordinate chart on Z/S!. If p is a singular
point, i.e., a point where G), # {e}, then the embedded disk ¥ (D,) is Gp-invariant and
the projection D, — ¥(D.)/G,, defines the orbifold structure at p.

It now remains to observe that the riemannian structure on Z/S! can be defined as
follows. Let ¢’ be the degenerate metric on Z obtained from the given metric g by “killing”
the direction of the vector field V; which generates the S'-action. Specifically, we set

V7 Vb)g (Wa VO)
g(VOa %)
This new pseudo-metric is still S'-invariant and has the following property. For any two

smooth embeddings transversal to the orbits ¥y, ¥y : D. — Z, such that mo¥; = moW,,
we have that

WV, W) = g(v, W) - &L

19 =V3g'.
These induced metrics are non-degenerate (since the maps are transversal to the orbits)

and give us the desired metric structure on Z/S'. This completes the proof of Proposition
3.13 and Corollary 3.2. ]

4. Some Examples

In this section we shall examine a large family of examples of compact simply-
connected riemannian orbifolds which arise from the process of quaternionic reduction.
Many of the examples constructed will be mutually homeomorphic as topological spaces,
but mutually distinct as orbifolds. We shall examine this phenomenon in detail. Using
the global orbifold structure, we shall then prove that these quaternionic Kahler spaces
are never locally symmetric.

Let (uo, ..., u,) denote linear coordinates on the quaternionic vector space bbh"*1,
where scalar multiplication is defined from the right. We consider these to be “homoge-
neous coordinates” for the quaternionic projective space PR = (H"*! — {0})/H*. When
equipped with Sp,,41-invariant metric

1 1
2 _ rvies [e% —Q 6% —
ds® = Tl " du® @ du® — e » (@*du®) ® (du’uP)
@ afl
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Pf is a model example of a compact symmetric manifold with holonomy Sp,,-Sp:. For
notational convenience we shall write our homogeneous coordinates as u = (u,, u) where
u = (u1,...,up). For each pair of integers p,q € Z* with (p,q) =1land 0 < ¢/p <1, we
shall consider the action on Pf defined in homogeneous coordinates by

01 (U, 1) = (2™ by, 2™Ptu), (4.1)
where ¢ € [0,1) if (p+ ¢) is odd and where t € [0,1/2) if (p + q) is even.

REMARK 4.2: The circle action described in (4.1) is an isometry of Pf; and it preserves its
quaternionic structure, i.e.,

g0 =9Q, ges.

Note that all isometries of Py preserve its quaternionic structure, i.e.,
Aut(Py) = {g € Isom(Pg) : ¢*Q = Q} = Isom(Pf).

Consequently, we can consider the quaternionic momentum mapping for this action. The
zero level set is given by an algebraic submanifold in Pf:

Zg = {(uo,u) € P : qUyiu, + puiu = 0}. (4.3)

THEOREM 4.4: The circle action given by (4.1) is locally free on Zy for all p,q € Z™,
q/p < 1 and is free for g = p = 1.

PRrOOF: This action on H**! is generated by the H*-invariant vector field
V(uo,u) = (iqu,, ipu).

The projection of this vector field on Pf is zero at a point with homogeneous coordinates
(o, u) if and only if
V(uo, u) = (uov, uv)

for some quaternion v. Taking the inner product with (u,,u) and assuming that
[uo|? + [u|? = 1 we find that
qUolU, + puiu = v

which, on Zg, implies that v = 0. However, this is impossible since V' # 0 outside the
origin. Hence, the projection of V' is non-zero on Zg, and thus the action on Zg is locally
free as claimed. It is trivial to see that the action is free if p = ¢ = 1. ]

It follows that all conditions of Theorem 3.1-2 apply and that the quaternionic reduc-
tion gives a compact riemannian quaternionic orbifold O, ,(n — 1)

def

Ogp(n—1) = Zg/S*.
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In the case where p = ¢ = 1 we see that the set Zpy is invariant under transformations
of the homogeneous coordinates (with matrix multiplication from the left). The resulting
space is the Grassmann manifold

U(n+1)
Un—-1)xU(2)

O11(n—1) =
with its symmetric quaternionic Kahler metric.

For g/p < 1, Oy p(n — 1) is an orbifold with a quaternionic Kahler metric. Explicit
calculation shows that as ¢/p — 1 the metric on O, ,(n—1) converges locally to the metric
on Op;. Similarly, as ¢/p — 0 these metrics converge locally to a hyperKéhler metric
on TPg_l (constructedby Eguchi-Hanson for n = 2 and by Calabi in general dimensions).
This limiting metric on T]P’E_1 is not locally symmetric, and the convergence is uniform in
three derivatives. Since the condition VR = 0 does not hold in the limit, it does not hold
on Oy ,(n—1) for all ¢, p with ¢/p sufficiently small. This argument, which is presented in
detail in [G1], shows that Oy ,(n —1) is not locally symmetric whenever ¢/p is sufficiently
close to zero. We shall present here an alternative argument which shows that Oy ,(n—1)
is not locally symmetric for all ¢,p with 0 < ¢/p < 1. This argument will be based on an
analysis of the large scale architecture of these spaces.

We shall now examine the global structure of O, ,(n — 1). We shall see that it has
two connected singular sets: a “nut” and a “bolt”, and we shall analyze the structure of
Ogp(n — 1) in a neighborhood of each. To begin we introduce affine coordinates w =
(w1, ..., wy) on the open set Uy = {[(u,,u)] € PR : wu, # 0} by setting

We = uqu,t, for a=1,..,n.

In these coordinates the action (4.1) becomes

2mipt

We—27r7,qt’

pe(w) =e
and the set Zy is given as
ZgNUp =2 {weH": ig+ pwiw = 0}.

We then write
wW=wy+JjW_

where w,,w_ € C” and observe that
Qot(w-l-a w—) = (627ri(p—q)tw+’ e27ri(p+q)tw_)’

ZpNUo ={(wy,w_) €Up: [w_|* — lwi||* = q/p, W_-wy =0} (4.6)
It is not difficult now to see that the action has non-trivial isotropy in Zg N Uy exactly
at the points where w, = 0. This gives us a singular set ¥y C Ogp(n — 1) described
explicitly as
Yo={(wy,w_)€Zy: wy=0}8*
={(0,w_) e C™: ||w_||> =1}/S' =P " (4.7)
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One easily checks that the isotropy group I'y = {t € S* : ¢;(z) = z}, for points =
corresponding to Y, is

Lipiq, if (p+ q) is odd;
roz{ pras il (0 +9) 48)

Zipta, if (p+ q) is even.
To describe the second singular set of O, ,(n — 1) we introduce affine coordinates
v = (¥, ...Up—1) On the open set
Ui ={[(uo,u)] € P : u, #0}

by setting

Y — _
Vo = \/juounl, and v, = uaunl for a=1,...,n—1.
q

If we write v = (v1,...,v,_1), the action becomes

_ 2miqt —2mipt 2mipt —2mipt
0t (v, v) = ("™ Tv,e , e MPlye ).
If, as before, we write v = v 4 jv_, then Zy is described here as:

ZgnU 2 {(ve,v ) €C* xC":  |vy|>+1=|v_]* and v_-v, =0}.

It is now easy to see that the action has non-trivial isotropy in Zyx N U; exactly at the
points where v, = 0. Hence, the remaining singular points form a set

Y1={[u] € Zyg: wu,=0}/S".

The action of S' on the hyperplane {u, = 0} C P% is of type (1,1) and X is just
quaternionic reduction with respect to this action. Hence, using our observation above,

U(n)
=0 —2) ) 4.9
12 0L =2) = Fe S T (4.9)
An easy calculation shows that the isotropy group
'y ={teS': ¢i(x) =z} for points x above ¥, is
Z if is odd;
Fl’é{ 2, (p+Q)}SO ; (4.10)
Zp, if (p+q) is even.

In summation we have the following. Let Gy, denote the Grassmann manifold of
complex k-planes in C".
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PROPOSITION 4.11: The singular points of the orbifold Oy ,(n — 1) are the two disjoint
manifolds ¥o = Gy ,,—1 and 31 = G, described above, and the local group of the orbifold
structure of Xy, is I‘k for each k.

If we set 0) ,(n - 1) = Ogp(n—1) =% and O] ,(n—1) = Oy p(n — 1) — Xy, then
our orbifold is the union

Opqgn—1) = Oqu(n -1Hu (’);7(1(71 - 1) (4.12)
of these two open sets. Note that
Yk COF (n—1) fork=0,L

We shall see that topologically (’)gm(n — 1) is the finite quotient of a vector bundle over
Yk by a fibre-wise linear action. The orbifold structure is, however, more subtle.

For simplicity of exposition we shall confine ourselves from this point on to the case
where n = 2 (dimO = 4) and where (p + ¢) is odd. We write OF (1) = OF . The
simpler component of the singular set here is ¥; = a point, and the orbifold structure in
a neighborhood is straightforward.

LEMMA 4.13: There is a smooth orbifold equivalence O(}’p & C? /Zsp where the action of
Zsyp on C? is generated by scalar multiplication by the complex number emia/p,

PROOF: We have from above that

ZgnU; 2{(vy,v)eC xC?: |vy|?*+1=|v_||* and v_-vy =0},

0t Vot v14) = (2P~ Dy, 01y),

and

( 27rz(p+q)t

QDt(Uo , V1— ) ,Ul—)-

There is a map of the complex 2-disc transversal to the orbit at v, = 0 in Zg given by
tr o
vy = (t, —;), v_=(ryg), (t,r) € C°,

where g is a real analytic function of ¢ and r of the form g = 1+ €(||r||, ||t]])-(The function
g is determined by the equation ||v||> + 1 = ||[v_||?.) Set w = e™/P. The image disc is
invariant under the transformation ¢, which generates the isotropy group at the point
vy = (0,0), v_ = (0,1). The induced transformations of the disc in our (¢, r)-coordinates
is

(t,r) — (Wi, wir).

Hence, O(}’p is of the form C?/Zs, as claimed. |
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To understand the structure of the component O) = > ¥ = §?, we introduce the
following spaces. Set S?"~1 = {z € C* : ||z|| = 1} and let 7, s be a pair of relatively
prime positive integers. Then we set

Hps = S x C/™5, (4.14)
where ®™¢ is the action of S* on S2 x C given by
7%z, ) = (772, T°a).

The natural projection H, , — S% = $3/S! makes H, s a complex line bundle over S2.
When r = 1, this is one of standard definitions of the complex line bundle of Chern class

1 over S2, so we take as given that c; (’HLS> =s.

LEMMA 4.15: ¢ (Hr,s> = s.

PRroOOF: Consider the map F : S3 x C — S3 x C given by F(z,a) = (z,a"), and note
that
Foq):’s — @1,3 oF

T’I“

for all 7 € S'. It follows that F induces a smooth map H,, — Hi s which is easily
shown to be a complex line bundle isomorphism. ]

This lemma shows that the structure of H, s as a topological manifold is completely
determined by the integer s. However, the structure of H, ; as an orbifold ( determined
by the S'-action) depends on both 7 and s.

THEOREM 4.16: For (p + q) odd, there is a smooth orbifold equivalence
Og,p = Hptq,2p-

In particular as a topological space (9271) is simply a complex line bundle over S? of Chern
class 2p.

PROOF: Let (wy,w_) € C? x C? be the affine coordinates on P defined above. We make
a slight change of these coordinates by setting

zp =wy and z_ = \/(Q/P+ ||W+||2>W— :
From (4.6) we see that, in these coordinates, Zg is given by
ZunUp={(z;,2_)€C*xC*: |z_||*=1 and Z_ -z, =0}
and the action is given by
or(a_,ay) = (17492, 7770g,) (4.17)
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for 7 € S'. Consequently, we have that as an orbifold O , is equivalent to the quotient
of the set

2y ={(z_,24) €S xC*: z,1z }

by the action (4.17). We define a map f : S x C — Z% by setting f(z, ) = (z,az')
where if z = (2,, 1) then z' = (=%1,%,). Note that for any 7 € S' we have the diagram
commutativity:

(Za OZ) — (Za aZT)
(1P Ttz 72Pq) — (rP1az, 7P~ 9azl)

i.e., we have that f o ®21T42P = ¢ o f. Thus f is an S'-equivariant diffeomorphism and
therefore f induces a smooth equivalence of the quotient spaces as orbifolds. ]

REMARK 4.19: If (p+ q) is even, analogous considerations show that

0 ~ 1 ~
08y = Hopa, and O}, = C*/Z,

REMARK 4.20: In higher dimensions the analysis is not dissimilar. Note that the set
2y ={(z_,2z,) € C*" xC": |z_|*=1 and z, 1z}

divided by the action ¥, (z_,z.) = (7z_, T2z4) is just the tangent bundle of P%~'. Using
(4.6) we find that if (p + ¢q) is odd, then as a topological space

Oy ,(n—1) 2 TPE [ Zyy,

where Zs,, acts on TlP’g_1 by scalar multiplication in the fibers by the 2pt*-roots of unity.
(The orbifold structure is more complicated.) Similarly, we have that

Op p(n—1) 2 E/Zy,,
where FE is the canonical complex vector bundle of rank 2 over the Grassmannian G, .

In particular, we see that ¥ is a deformation retract of (’){;,p. Thus, from the Van-
Kampen Theorem we know the following.

THEOREM 4.21: Oy ,(n) is simply-connected for all ¢, p and n.
Using the detailed structure presented above we can now prove the following
THEOREM 4.22: O, ,(n) is not locally symmetric for any ¢, p,n with q/p < 1.
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ProoOF: Consider first the case of dimension 4 (n = 1), with p + ¢ odd and > 4. Suppose
that the metric on Oy (1) were locally symmetric for some relatively prime pair p, ¢ with
q/p < 1. Then from the classification (cf. [W] for example) we know that O, ,(1) must
be locally isometric to either S* or P2 ( with the standard metrics). In fact every point of
Oy.p(1) must have a neighborhood which is isometric to a neighborhood of a point z, in
X /T, where X is one of the two spaces above and where T is a finite group of isometries of
X which fixes the point zy. The action of I' is entirely determined up to linear equivalence
by the orbifold structure of Oy ,(1).

Consider the singular point 3; and its neighborhood (’)é,p. By (4.13) we know that as
a smooth orbifold, we have (’);,p = C? /Zs, where Zy, is generated by scalar multiplication
by w = /P and where ¥; corresponds to the origin in C2. This linear Zap-action is
linearly equivalent to a unique conjugacy class of Zsg, subgroups in SO4. Therefore, under
our assumption that Oy (1) is locally symmetric, we conclude the following. There is a
neighborhood U of ¥; in O, (1) which is isometric to a neighborhood of zy in X/Zy,

where X = S% or P2 and Zo, acts on X by exponentiation of its orthogonal action on
T, X described above.

We now know quite explicitly what our metric is in a neighborhood of ;. Therefore,
by the analyticity of the metric, we know it essentially everywhere. To make this precise,
let (9; P be the non-singular riemannian manifold with Z,-action so that Oé,p = O;,p [ L.
Now Oé’p is locally isometric to the symmetric space X, and we have given an explicit
Zyp-equivariant isometry defined in a neighborhood of the fixed point 3. From the stan-
dard arguments of Cartan-Ambrose-Hicks, there is a uniquely defined ”developing map”
extending this isometry along arbitrary curves in O;’p. Since O(}’p is simply-connected we
thereby obtain a uniquely defined isometric immersion

w:(;);,p—>X

which, because of its uniqueness, is Zsy-equivariant.

For each r > 0, consider the ball
B, ={v e Tfh@;,p sl < r}

and identify this ball with the corresponding set {v € Ty, X : |jv|| < 7} via t,. Then for
all r sufficiently small we have a commutative diagram

T
N LY (4.23)
X

of Zyp-equivariant maps. For simplicity, let us renormalize our metric so that X has
injectivity radius m. We then consider the number

p=sup{r | exp: B, — (’N);,p is injective}.
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The map exp : B, — X degenerates on 0B,, and the map 1; is an immersion. Hence,
by (4.23) we conclude that p < 7. Since exp : B, — X is an embedding for r < T,
we conclude that p is also the radius of the largest ball on which the immersion Y is
invertible. From this it follows easily that there must exist some unit vector v €~B—1
so that exp(pv) € O; , is not defined, i.e., so that the geodesic v = exp(tv) in O]
cannot be extended beyond the interval (0, p) in the positive direction. Cosequently, (),

0 <t < p, must be the lift of a minimal geodesic vy in (’);’p joining ¥ to Xp.

Let C = @é,p — {21} and note that projection 1 : € — C/Zgp = Oy p(1) —{So UL}
is the universal covering of the regular set O, ,(1) — {3¢ U X1}. The preimage of the
geodesic g in C consists exactly of the 2p translations gy for g € Zy,. Let us suppose
that p < m. Then the limits e, = lim;_,, gy(t) for g € Zsp, correspond to distinct points
on the boundary of the ball exp(B,) C X. In particular, no two of these geodesics will
reconverge in exp(B,) as t = p.

However, suppose we consider the orbifold structure of Oy (1) in a neighborhood U
of the point oo = Yo(p) € Xo. This neighborhood can be written as U/Z,,, where U is
a neighborhood of a point 6o € X and where Z,,, C Isom(X) is a cyclic group fixing a
totally geodesic surface EN]O C X which contains 7. For any choice of ¢ € XN)O C X, the
normal plane Nz, to ¥ at 6o has the property that exp(Ns,) is totally geodesic in X.
Under this ramified covering U — U/Z,,, = U, the geodesic v lifts to (p+¢) geodesics
which lie in the surface exp(IN5,) and converge to the point &y in a regular pattern with
successive angles 27/(p + ¢). Now this desingularized geometry can be matched to the
geometry of exp(B,) C X at the endpoint of the geodesic v. Since 27 /(p+ q) < 7/2, we
see that there are at least two more geodesics which correspond to local lifts of vy and
which enter into the ball exp(B;). We recall that exp(B, — {0}) is actually a subset of
C, and that C — C/Z, is the universal cover of 0), — {ZoUZX1}. It is clear then
that these three geodesic rays near y(p) must descend to the minimal geodesic vy. hence,
the geodesics g7, g € Zsp in C do reconverge in contradiction with our conclusion above.
Hence, we have proved that p = 7.

Recall now that
X — eXp(Bw)

point, if X = S*,
Pg, if X = P2.

In either case it is clear that (7);710 = exp(B;) since the immersion 1 cannot be extended
further. Hence, there is an isometry

O;,p = (§* = point)/Zay, or (PE —Pg)/Zay
which immediately yields an isometry
Ogp = 54/Z2p or (P<2C - Rlc)/ng (4.24)

of the metric space completions. As before we easily see that the riemannian structure of
the spaces (4.24) are not compatible with the given Z,_, structure acting locally isometri-
cally on S* or PA. We conclude that Oy, is not locally symmetric. The case where (p+q)

22



is even and > 8 is entirely similar. The remaining 10 cases can be handled in the same set
up with a little extra work. The arguments in higher dimensions proceed analogously. i

As we have seen above, the space O, (1) (for (p+ ¢q) odd) can be obtained by gluing
the cone on the standard lens space Lop 1 = S 3 /Zap, together with the line bundle of Chern
class 2p over S2. This space is not equivalent as an orbifold to PZ/Zy,. It is, however,
equivalent to a so-called “weighted projective space”. These are defined as follows. Fix
positive integers p, ¢ and r with (p, ¢, 7) = 1 and define the weighted projective plane P2

P.a,T
to be the quotient of S5 C C3 by the S'-action:

(20,21, 22) — (P20, 7921, T 22).

PROPOSITION 4.25: For each pair of positive integers ¢ < p with (p,q) = 1 there is a
smooth orbifold equivalence

Oq,p(l) = 2

1P)%p,p+q,p+q’ if (p + q) is odd,
P pta pras if p+q) is even.
P EE )

PRrROOF: We use the affine coordinates (wy,w_) € C2 x C? and write Zy NUj as in (4.6).
Let Vo ={z € S°%: |z1||* + ||22||* # 0} and map V; — Zg N Uy by setting

1 1
(2022, —2021) 5 W_ = o (21, 22).

Wy =
| 2112 + |22

|21]]? + [|22]|?
Note that

(T2 2y, TPz, TPT9zy) — ((Tp_qw+(Z1,Z2), TPy, (Zl,ZZ))

for any 7 € S*, i.e., this map is S'-equivariant. It is straightforward to check that the
induced map on quotients extends to give the orbifold equivalence desired. ]

As a consequence, we have the following result.

THEOREM 4.26: Each of the weighted projective planes ]ng’pﬂ’pﬂ for p and g as above

and (p+ q) odd carries a self-dual Einstein orbifold metric with positive scalar curvature.

(This is also true of the weighted projective planes ]P’i via pra Withp,q as above and (p+q)
1T 2 03

even.) At most finitely many of these metrics are locally symmetric. As q/p — 1, these
metrics converge locally to the Fubini-Study metric on Pil,l‘ Hence, there are infinitely
many which are mutually non-isometric even locally.

REMARK 4.27: Choosing other weights for the S'-action on P2 gives similar metrics on

]P’ip,r for other values of p,q and 7.
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Concluding our paper we would like to mention that the quaternionic reduction
method described here can be applied to the case of non-compact quaternionic Kahler
manifolds, and in particular to the non-compact dual of Pf. Unlike the compact case,
one obtains here new smooth manifolds with Sp,,-Sp; holonomy. Hitchin [H2] used the
method to quotient quaternionic hyperbolic space by R and constructed 4n-dimensional
generalizations of the Pedersen metric [P]. However, it is possible to construct many other
new non-compact quaternionic Kéhler metrics which are not locally symmetric. All of
them are given by quaternionic reduction in quaternionic hyperbolic space. In particular,
in dimension 4 one obtains many new self-dual Einstein metrics with negative cosmological
constant [G2].
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