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In recent years quaternionic Kahler and hyperkahler manifolds have received a great
deal of well-deserved attention. They appear, often unexpectedly yet naturally, in many
different areas of mathematics and mathematical physics. This attention has resulted in
the rapid development into the rich theory of quaternionic manifolds that exists today.
It has even been argued that these recent advances in quaternionic geometry vindicate
Hamilton’s conviction that the algebra of quaternions should play an important role in
mathematical physics [At, Hil].

The purpose of this paper is to describe in detail the geometry and topology of a
class of Riemannian Einstein manifolds that are closely related to both hyperkahler and
quaternionic Kahler manifolds. These manifolds, known as manifolds with a Sasakian
3-structure, first appeared in a paper by Kuo in 1970 [Ku]. Incidentally, Kuo’s paper
appeared a few years before Ishihara [I1] and Calabi [Cal] introduced the now commonly
accepted terms “quaternionic Kahler” and “hyperkahler”, respectively, into the differential
geometry vocabulary. We shall refer to manifolds with a Sasakian 3-structure as 3-Sasakian
manifolds. Sasakian structures historically grew out of research in contact manifolds and
were studied extensively in the 1960’s especially by the Japanese school (See [YK] and
references therein). In 1970 three more papers, [KuTach], [TachYu], and [Tanl], were
published in the Japanese literature discussing 3-Sasakian structures. These structures
were then vigorously studied by Japanese mathematicians from 1970-1975, culminating
with an important paper of Konishi in 1975 [Kon| which shows the existence of a 3-Sasakian
structure on a certain principal SO(3) bundle over any quaternionic Kéhler manifold of
positive scalar curvature. Earlier on, in 1973 Ishihara [I2] had shown that if the distribution
formed by the three Killing vector fields which define the Sasakian 3-structure is regular
then the space of leaves is a quaternionic Kahler manifold. This then led Ishihara to
his foundational work on quaternionic Kahler manifolds [I1]. It is notable that in this
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early period the only examples of 3-Sasakian manifolds that were given were those of
constant curvature, namely the spheres S*~1, the real projective spaces RP**~1 and
spherical space forms in dimension three [Sasl]. Even though Konishi’s result mentioned
above combined with the earlier work of Wolf [Wo] on the classification of homogeneous
quaternionic Kahler manifolds of positive scalar curvature give many new homogeneous
examples, no further work on 3-Sasakian manifolds was done until very recently in [BGM1],
and in [FK] for dimension 7.

Unlike the current intense interest in quaternionic Kahler and hyperkahler structures,
Sasakian 3-structures appear to have been largely neglected in recent years. For example,
in Besse’s comprehensive book on Einstein manifolds [Bes], there is an entire chapter
devoted to quaternionic Kahler and hyperkahler manifolds. By contrast, there is no explicit
mention of 3-Sasakian manifolds which appear only implicitly and very briefly as examples
of homogeneous Einstein spaces. For instance, Besse proves the existence of two Einstein
metrics on a certain principal SO(3) bundle Y over any quaternionic Kéhler manifold with
positive scalar curvature [Bes: Proposition 14.85]. The manifold Y with one of these two
metrics is an example of a 3-Sasakian manifold, and the fibration is the one given in the
lower right hand corner of diagram 0.1. Although this result was discovered by Konishi
[Ko| almost 20 years ago, Besse did not seem to be aware of this fact.

We were led to study this geometry because it appears as a natural object in a
new quotient construction for certain hyperkéhler manifolds [BGM1]. We found that 3-
Sasakian manifolds provided a natural piece of a puzzle that links together three other
different geometric structures. In particular, for any quaternionic Kahler manifold M of
positive scalar curvature there exists a commutative diagram

U
C* [ Z+ L
v N
0.1 Z H* /Z5 S
Cp! RP?
¢ v
M

where U is hyperkéhler (the Swann bundle associated to M [Sw]), Z is Kéhler-Einstein (the
twistor space associated to M [Sall]), and S is 3-Sasakian (the Konishi bundle associated
to M [Kon]). The map ¢ : & < U is the inclusion of a level set of a natural real valued
function while all the other maps in diagram 0.1 are fibrations where we have denoted each
map by its associated fiber. Furthermore, both Z and § are compact, of positive scalar
curvature, and S is a principal circle bundle over Z. It is important to realize that all four
geometries in diagram 0.1 are Einstein. The important observation, due to Kashiwada
[Ka], that 3-Sasakian manifolds are always Einstein spaces and the relationship of S to
the other quaternionic geometries appearing in diagram 0.1 motivated our efforts to study
and understand these spaces.

After investigating this intriguing geometry we have arrived at the compelling con-
clusion that 3-Sasakian manifolds are by no means less interesting than their hyperkahler
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or quaternionic Kahler counterparts. In fact, a case can be made that they are even
richer and more interesting. As we have already mentioned there is always at least one
3-Sasakian manifold associated with every quaternionic Kahler manifold of positive scalar
curvature. However, as we pointed out in [BGM1], 3-Sasakian manifolds are much more
plentiful than quaternionic Kahler manifolds of positive scalar curvature. In all but five
quaternionic dimensions there are only 3 explicitly known examples of compact quater-
nionic Kéhler manifolds of positive scalar curvature (in dimension 1 there are only two
such examples whereas in dimensions 7, 10, 16, and 28 there are four). Moreover, all of
these examples are symmetric spaces and can be found in Wolf’s classification [Wo]. Tt
is also known that in quaternionic dimensions 1 and 2 there are no others [Hi2|, [PoSall.
By contrast, a 3-Sasakian manifold must be of real dimension 4k + 3 and in each such
allowable dimension we were surprised to find infinitely many examples of compact 3-
Sasakian manifolds. In addition, as we shall show below, these examples range through
infinitely many distinct homotopy types in every dimension. Moreover, in dimension 7, we
found countable families of strongly inhomogeneous 3-Sasakian manifolds, that is mani-
folds which are not homotopy equivalent to any compact Riemannian homogeneous space.
These examples, which are discussed in detail in the later part of this paper, are, to the
best of our knowledge, the only examples of complete inhomogeneous Einstein manifolds
of positive scalar curvature. Most importantly, as we explain below, in order to recapture
the close relationship between these new 3-Sasakian examples and quaternionic Kahler
geometry, one must generalize diagram 0.1 to allow the base space M to be a quaternionic
Kahler orbifold.

We now explain how this paper is organized and highlight some of our main results.
In section one we introduce some basic facts about Riemannian foliations and Riemannian
orbifolds which are needed to generalize diagram 0.1 and other results to the orbifold
category. Section two begins with the definition of a Sasakian 3-structure on a Riemannian
manifold and continues with a brief discussion of some classical results for such structures.
In particular, we recall both Ishihara’s [I12] and Konishi’s [Kon| constructions, as well as
Kashiwada’s [Ka] observation that every 3-Sasakian manifold is necessarily Einstein. At
this point we make a fundamental extension of these known results to the case of orbifold
fibrations by proving the following theorem.

THEOREM A: Let (S,9,&%) be a 3-Sasakian manifold of dimension 4n + 3 such that the
Killing vector fields £€* are complete for a = 1,2,3. Then

(i) (S,g,£%) is an Einstein manifold of positive scalar curvature equal to 2(2n+1)(4n+3).
(ii) The metric g is bundle-like with respect to the foliation F, defined by {{*},=123.
(iii) Each leaf L of the foliation F is a 3-dimensional homogeneous spherical space form.

(iv) The space of leaves S/F is a quaternionic Kahler orbifold of dimension 4n with
positive scalar curvature equal to 16n(n + 2).

Hence, every complete 3-Sasakian manifold is compact with finite fundamental group and
diameter less than or equal to .

Thus, we show both that every complete 3-Sasakian manifold is necessarily of pos-
itive scalar curvature and that it must also fiber, in the orbifold sense, over a compact



quaternionic Kahler orbifold. This observation, first hinted at in [BGM1], turns out to
be crucial, both in terms of describing the geometry of such spaces and constructing non-
trivial examples.

In section three we prove the converse of the result presented in [BGM1], where we
showed that 3-Sasakian manifolds occur naturally as level sets of the hyperkahler potential
function v on a certain hyperkahler manifold. Here we show that every 3-Sasakian manifold
can be embedded in a hyperkahler manifold as the level set of such a hyperkahler potential.
More precisely we prove:

THEOREM B: Let (S, gs,£?) be a complete 3-Sasakian manifold. Then the product man-
ifold M = S x R* with the cone metric gyr = dr? + r2gs is hyperkéhler so that there is a
commutative diagram of (orbifold) fibrations

S xRt
v e
0.2 Z l S
e v
O

where O is a quaternionic Kahler orbifold.

Thus, Theorem B shows that every 3-Sasakian manifold comes from the hyperkahler
quotient construction given in [BGM1]. Moreover, Theorem B and our results of later
sections can be used to give many new examples of compact hypercomplex manifolds.
This is Corollary 3.11.

In section four we classify all 3-Sasakian homogeneous spaces, that is 3-Sasakian man-
ifolds with transitive action of the group of automorphisms of the Sasakian 3-structure.
Combining Wolf’s [Wo| classification with results of Ishihara [I2], Tanno [Tanl], and The-
orem A we prove the following theorem.

THEOREM C: Let (S, g,£%) be a 3-Sasakian homogeneous space. Then S is precisely one
of the following homogeneous spaces:

Sp(n) ~ 4n—1 Sp(n) ~ 4n—1
Sp(n —1) 5 ’ Sp(n —1) X Zy RE ’
SU(m) SO(k)
S(Um-2)xU(Q1))’ SO(k — 4) x Sp(1)’

Gz F4 EG E7 ES

Sp(1)’ Sp(3)’ SU(6)’ Spin(12)”  E;

Here n > 1, Sp(0) denotes the identity group, m > 3, and k > 7. Furthermore, the fiber
F over the Wolf space is Sp(1) in only one case which occurs precisely when (S, g,£%) is

simply connected with constant curvature; that is, when S = S*"~'. In all other cases
F =S50(3).



The classification of 3-Sasakian homogeneous spaces is an expected consequence of
the combined work of Wolf and Ishihara. However, Theorem A provides the key ingredient
in the proof. The metrics on all these cosets spaces are Einstein and they were considered
in this context in Besse. However, with the exception of the constant curvature case, these
are not the normal homogeneous metrics, as they are not naturally reductive and thus are
not obtained from the bi-invariant metric on G by Riemannian submersion.

The key technique for constructing new examples of 3-Sasakian manifolds is the re-
duction procedure described in section five. Explicitly, we prove

THEOREM D: Let (S, gs,£*) be a 3-Sasakian manifold with a compact Lie group G acting
on S by 3-Sasakian isometries. Let us be the corresponding 3-Sasakian moment map and
assume both that 0 is a regular value of us and that G acts freely on the submanifold
ps'(0). Furthermore, let

Lipgt(0) — S

and
w:pgt(0) — pst(0)/G

denote the corresponding embedding and submersion. Then

(S = p5'(0)/G, 3s,€)

is a smooth 3-Sasakian manifold of dimension 4(n—dim g) —1 with metric js and Sasakian
vector fields £* determined uniquely by the two conditions

* * >
L'gs = T gs

and

(€% |us'(0) = €.

Theorem D is then used in the next two sections to obtain explicit new families of 3-
Sasakian manifolds. First, in section six we give an explicit description of the Riemannian
metic for the 3-Sasakian structure on the coset spaces

U(n) and SO(n)
U(n—2)xU(1) SO(n —4) x Sp(1)°

These spaces are obtained from Theorem D as 3-Sasakian quotients of the unit sphere
S4n=1 with its canonical round metric by actions of U(1) C Sp(n) and Sp(1) C Sp(n),
respectively. Here the group Sp(n) is the automorphism group of the 3-Sasakian structure
U(n)
U(n—2)xU(1)
an important deformation construction given in section seven. We do not know of any
such explicit description of the remaining five exceptional examples given at the end of
Theorem C, but in this case the Konishi bundle construction gives the existence of the
3-Sasakian metric on G/L;.

sets the notation for

on S**~1, Moreover, this detailed discussion for



Next, in section seven we present a deformation theory associated to the 3-Sasakian
U(n)
Un—-2)xUQ1)
families of inhomogeneous 3-Sasakian manifolds in every allowable dimension. The point
is that, in the smooth category under the assumption of positive scalar curvature, the
quaternionic Kéhler quotient construction given in [GL] is extremely rigid. The only
know quotients which can occur as the base space in diagram 0.1 are the quotients of the
quaternionic projective spaces HP"~! by U(1) and Sp(1). These two quotients produce
the complex and real Wolf spaces X (n — 2) and Y (n — 4), respectively. They lift to the
quotients of the Konishi bundle, giving the two 3-Sasakian quotients of $*"~! mentioned
above and discussed in section six. However, these two examples are not the only quo-
tients of S4"~! that yield complete 3-Sasakian manifolds. The U(1)-quotient at this level
actually has infinitely many discrete deformations of the standard homogeneous example.
Every deformation produces a smooth 3-Sasakian manifold. All these quotients project to
orbifold quotients considered in [GL]. This is why the generalization from diagram 0.1 to

diagram 0.2 given in [BGM1] is so important. In particular, we prove

homogeneous manifold which we use to generate our most important

THEOREM E: Let p = (p1,...,Pn) € Z be an n-tuple of pairwise relatively prime positive
integers. Let S(p) be the quotient of the complex Stiefel manifold V,‘E2 by a free circle
action, or equivalently, the left-right quotient of the unitary group U(n) by H C G* =
Gr x Ggr, where H =U(1) x U(n — 2) and the action is given by the formula

Tpl

(TaB) ) H2 @
=1 |v(es)

TPn

Here W € U(n) and (7,B) € U(1) x U(n — 2). Then S(p) is a compact, simply connected
(4n — 5)-dimensional 3-Sasakian manifold whose integral cohomology ring H*(S(p), Z) is
generated by two classes

by € H? (S(p),Z) and  fo,_1 € H2"_1(S(p),Z)
which satisfy the following relations:

O-"_l(p)bg_l =0, g =0, f22n—1 =0, f2n—1bg_1 = 0.

n
Here 0,,—1(p) = Zpl ---Pj -+ Dy Is the (n — 1)t elementary symmetric polynomial in p.
J=1

The computation of the integral cohomology ring of S(p), which is based on tech-
niques developed by Eschenburg [Esch], is presented in section eight. Notice that Theorem
D immediately implies that in every dimension of the form (4k — 5) for k > 3 there are
infinitely many distinct homotopy types of complete 3-Sasakian manifolds. Theorem C
implies that all of them, except in the case when p = (1,...,1), are inhomogeneous Ein-
stein manifolds. Moreover, it turns out that some of our examples are not even homotopy

6



equivalent to any compact homogeneous Riemannian space. We prove this result in sec-
tion nine, where we consider the case of n = 3 in more detail. At this point we rewrite
the 3-Sasakian 7-manifold S(p1, p2, p3) as a left-right quotient of SU(3) by a free circle ac-
tion. We also describe the relation of our spaces S(p1, p2, p3) to the bi-quotients of SU(3)
considered by Eschenburg in [Esch]. Most importantly, combining a result of Eschenburg
and Theorem E we have the following theorem.

THEOREM F: If 09(p) = p1p2 + pap3s + psp1 = 2 (mod 3) then S(p1,p2,ps3) is strongly
inhomogeneous; that is, it is not homotopy equivalent to any compact Riemannian homo-
geneous space.

In particular, for any odd ¢ > 0, the manifold S(¢,c+ 1, ¢+ 2) satisfies the condition
that o2(p) =2 (mod 3). Thus, there exists a countable family of strongly inhomogeneous
Einstein spaces of positive scalar curvature. To our knowledge, this family (and many other
similar S(p1,p2,p3) families) are the only known examples of strongly inhomogeneous
compact Einstein manifolds of positive scalar curvature. Furthermore, we show that as c
tends to infinity, S(c,c+ 1, ¢+ 2) approaches SU(3)/U(1) with its homogeneous Sasakian
3-structure in the Cheeger p*-topology [Ch1,Ch2]. This, on the other hand, implies that,
for large ¢, our 3-Sasakian manifolds S(c,c+ 1, ¢+ 2) admit metrics of positive sectional
curvature. Finally, in the last section we briefly discuss some open problems arising from
our investigations.

We would like to thank Gerardo Hernandez for discussions concerning this work and
Jim Milgram for discussions as well as pointing out the work of Kreck and Stolz to us.
The second named author would like to thank the Max-Planck Institute and its director
Professor F. Hirzebruch for hospitality and support. This article was completed during
his visit there.

§1. Orbifolds and Riemannian Foliations.

In this section we review some important properties of both orbifolds and related
Riemannian foliations. Roughly speaking orbifolds are like differentiable manifolds except
that instead of being modelled on R™ they locally look like R /T', where T" is a discrete
group of diffeomorphisms of R™. This idea was first introduced by Satake [Sat] and he called
these spaces V-manifolds. They also became known as Satake manifolds or orbifolds. We
will use the term orbifold which has gained recent acceptance in the literature. Orbifolds
appear naturally as the space of leaves of certain nicely behaved Riemannian foliations.
In this paper we will not be concerned with the most general type of orbifold nor the most
general type of foliation, but rather only with those orbifolds O that arise as the quotient
space of a locally free action of a compact Lie group G on a smooth manifold M (in our
case G will be either SU(2) or SO(3)). In this case the fundamental vector fields of the
action of G on M define a foliation F on M and the space of leaves M/F has the structure
of an orbifold. Thus, the smooth manifold M can be viewed as a desingularization of the
orbifold M/F. More generally, the leaf space M/F of any Riemannian foliation (M, F, g)
with compact leaves is an orbifold. Satake’s original article [Sat] is a good reference for the
theory of orbifolds and the books of Molino [Mo] and Reinhart [Rei] are good references
for the theory of Riemannian foliations.

Following Satake [Sat] and Molino [Mo| we define orbifolds and smooth maps between
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them. Let O be a second countable Hausdorff space, and U C O an open set. A local
uniformizing system (Lu.s.) for U is a triple {U,I', 7} where U C R" is an open subset
of R*, I' is a finite group of diffeomorphisms on U and m : U—U is a continuous map
satlsfylng

(i) roo=mforallo el
(ii) m induces a homeomorphism ¢ : U—U/T.
The pair (U, ¢) is called a local chart of O.

In particular, let @ = U/T and V C U/I‘ any open set. Then {V I',7} is a local
uniformizing system for V' with V={pelU| 7(p) € V} and 7 : V—V equal to the
restriction to V of the natural projection 7 : U —)U/ I'. In this case the local chart ¢ is the
restriction of the identity map. Now consider open sets U CR* and U’ C R™ together
with finite groups of diffeomorphisms I' and I acting on U and U’, respectively. We say
that a continuous map f : U/T—U’ /T is smooth if f lifts locally to a smooth map, that
is, for every point p € U/T" there are neighborhoods V C U/T of p and V' ¢ U'/T’ of
f(p), local uniformizing systems {[7 ,I,m} and {U "I, '} for V and V', respectively, and
a smooth map f : V—V’ such that the diagram

f .
3 VI

<

VI

commutes. The rank of the smooth map f is defined to be the rank of f . The notions of
orbifold immersions, submersions, diffeomorphisms, etc., are defined in a similar manner.

Notice that a smooth map f : U /I‘—)f]’ /T defines a group homomorphism I'—T"
as follows: Let o € I' then by the commutativity of diagram 1.1 f (a(p)) lies in the fiber
7n'7(f(mw(p)) = I''. Hence, there is a unique o’ € I such that f oo = ¢’ o f. One easily
checks that the map o — ¢’ is a homomorphlsm If f is a diffeomorphism onto its image

(U JT) C U’ /T, then the map o — o' is a group monomorphism. In particular, if f covers

the identity map f = id then Satake [Sat] calls f an injection.

DEFINITION 1.2: Let O be a second countable Hausdorff space. A smooth orbifold atlas
for O is a cover {U;} of O by open sets U; with a local uniformizing system {U;,T';, m;}
for each U; such that the homeomorphisms ¢; satisfy the condition that

¢; o ¢J_1 : ¢j(Uz N U]) — QSJ(UZ N UJ)
is a diffeomorphism for each i,j with U; " U; # (. Then O together with a maximal
orbifold atlas is called an orbifold.

A point of p € O is regular if p has a neighborhood U that has a local uniformizing
system with I' = id. Otherwise p is called singular. The regular points of O form a dense
open set.



REMARK 1.3: Satake’s original definition included the requirement that the fixed point set
of any of the finite groups I'; be of codimension at least 2. This restrictive definition is not
theoretically convenient at this point. For example, Molino’s theorem stated below (see
1.8) does not hold for Satake’s less general definition of orbifold. However, the orbifolds
that we construct in this paper do have singular sets of codimension greater than or equal
two.

Satake then generalizes such standard notions of differential geometry as bundles,
differential forms, Riemannian metrics, etc., to the orbifold category (see [Sat] for further
details). As mentioned above our interest in orbifolds stems from the fact that they occur
naturally as the leaf space of certain Riemannian foliations.

Recall that a foliation JF on a manifold M is given by an integrable subbundle V of the
tangent bundle T M, that is, a subbundle whose smooth sections form a Lie subalgebra of
the Lie algebra of smooth vector fields on M. There is an exact sequence of vector bundles

1.4 0—V —TM —TM/V — 0.

A Riemannian metric g on M splits this exact sequence to yield the Whitney sum
TM = VoH

defining the horizontal subbundle H.. The integrable subbundle V is called the vertical
subbundle. In general, and in our case in particular, the horizontal subbundle # is not
integrable. A Riemannian manifold (M, g) together with a foliation F on M is called a
foliated Riemannian manifold and is denoted by (M, g, F). The following definition is due
to Reinhardt.

DEeFINITION 1.5: [Rei2] Let (M, F, g) be a foliated Riemannian manifold. The metric g is
said to be bundle-like if for any horizontal vector fields X,Y in the normalizer of V under
the Lie bracket, the equation

Vg(X,Y) =0

holds for any vertical vector field V.
REMARKS 1.6:
1. Vector fields belonging to the normalizer of V are often called foliate [Mo].

2. Functions that are annihilated by all vertical vector fields, as in Definition 1.5 above,
are known as basic [Mo].

3. Definition 1.5 is equivalent to the condition that the horizontal distribution H be
totally geodesic (see [Mo] or [Reil] for details).

We shall make use of the following lemma:

LEMMA 1.7: Let (M,g,F) be a foliated Riemannian manifold, and suppose that the
vertical distribution V is spanned by Killing vector fields. Then g is bundle-like.

ProoF: It is enough to show that the condition in definition 1.5 holds when V is any
Killing vector field. Let X,Y be horizontal vector fields on M belonging to the normalizer
of V, then we have

Vg(X,Y) = (Lvg)(X,Y) +g([V,X],Y) +g(X,[V,Y]) = 0

9



where Ly denotes the Lie derivative with respect to V. The first term vanishes since V is
a Killing vector field. The two remaining terms vanish since X and Y are horizontal and
the terms in brackets are vertical. |

The following result, which is given in Molino, is fundamental to our work:

THEOREM 1.8: [Mo: Proposition 3.7] Let (M, F, g) be a Riemannian foliation of codimen-
sion q¢ with compact leaves and bundle-like metric g. Then the space of leaves M/ F admits
the structure of a q dimensional orbifold such that the natural projection @ : M—M/F
is an orbifold submersion.

Another important concept in the theory of foliations is that of the leaf holonomy
group. This group is a certain image of the fundamental group of a leaf in the local group
of germs of diffeomorphisms of a transverse submanifold to the leaf. It measures how
transversals change as one moves along a loop in the leaf. In our situation we have the
following:

PROPOSITION 1.9: Let (M, F, g) be a Riemannian foliation with compact leaves and bundle
like metric as in theorem 1.8. The dense open set (M/F)° of regular points of M/F is
precisely the set of leaves with trivial holonomy and there is a unique Riemannian metric
g on (M/F)° such that the natural projection m: M—M/F restricts to a locally trivial
Riemannian submersion on ©=((M/F)°). At a singular point of M/F the finite group
I' is precisely the holonomy of the leaf. In particular, if there are no singular points, the
projection m: M—M/F is a locally trivial Riemannian fibration.

PRroOF: Except for the local triviality statement, this follows from Molino [Mo: §3.6]. The
local triviality is a consequence of the Ehresmann fibration theorem. ]

Proposition 1.9 allows one to talk about the quotient M/calf as a Riemmanian orb-
ifold. The metric § is defined only on the dense open set (M/F)°; however, the transverse
part g7 of the metric g is a metic on the horizontal distribution H which satisfies

™™g = gr
on the points of 7~1((M/F)°). Thus, g7 can be interpreted as describing the metric on the
whole orbifold including its singular locus. Accordingly all of O’Neill’s standard formulae
for Riemannian submersions hold for these more general orbifold Riemannian submersions
(see [Reil: page 160]). Hence, we shall freely apply these well-known formulae, given for
example in Besse [Bes], to this more general setting of orbifold Riemannian submersions.

§2. Some Old and New Results on 3-Sasakian Manifolds

In this section we review some known results about Riemanian manifolds which admit
3-Sasakian structures and then give an important generalization. Following Ishihara and
Konishi [IKon], we begin by recalling the definitions of Sasakian and 3-Sasakian structures
on a Riemannian manifold.

DEFINITION 2.1: Let (S,g) be a Riemannian manifold and let V denote the Levi-Civita
connection of g. Then (S, g) has a Sasakian structure if there exists a Killing vector field
¢ of unit length on S so that the tensor field ® of type (1,1), defined by

(4) o = V¢

10



satisfies the condition
(44) (Vx®)(Y) = n(Y)X - g(X,Y)g,

for any pair of vector fields X and Y on S. Here n denotes the 1-form dual to & with
respect to g, i.e. g(Y,€&) = n(Y) for any vector field Y, and satifies an equation dual to
(i), namely,

(4i2) (Vxn)(Y) = g(Y,2X).
We write (®,&,n) to denote the specific Sasakian structure on (S, g) and sometimes refer
to S with such a structure as a Sasakian manifold.

It is straightforward to verify that the following equations hold.

PROPOSITION 2.2: Let (S, g,&) be a Sasakian manifold and X and Y any pair of vector
fields on §. Then

(4) Pod(Y) = Y +n(Y)¢,
(i) ®¢ = 0,

(224) n(®Y) = 0,

(iv) 9(X,8Y) + g(®X,Y) = 0,
(v) 9(BY,82) = g(Y,Z) - n(Y)n(2),
(vi) dn(Y,Z) = 2g(®Y, Z).

Furthermore, the Nijenhuis torsion tensor

Ng(Y,Z) = [®Y,®Z] + ®%[Y, Z] — ®[Y, ®Z] — ®[DY, Z],
of ® satisfies
(vit) Ne(Y,Z) = dn(Y,Z) ®&.

We now define our main objects of interest.

DEFINITION 2.3: Let (S, g) be a Riemannian manifold that admits three distinct Sasakian
structures {®?, €% n*}4=1,2,3 such that

(i) g(&*, &%) = %
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and
(’L’l,) [£a7£b] — 26abc€c

fora,b,c =1,2,3. Then (S, g) is a 3-Sasakian manifold with Sasakian 3-structure (S, g, £%).

It follows directly from the definition that every 3-Sasakian manifold admits a local
action of either Sp(1) or SO(3) as local isometries, and if the vector fields £* are complete
these are global isometries. We refer to this action as the standard Sp(1) action on S. In
the remainder of this paper we shall assume that the vector fields £€* are complete. This
structure has several important implications. First, it is not difficult to verify that the
following relations between the Sasakian structures hold:

na, (é-b) — 5ab’
2.4 (Da,gb — _ea,bc§c’
P o (I)b o é-a ® nb — _eabcq)c . (Sabid.

The following result is well-known:

THEOREM 2.5: Every 3-Sasakian manifold (S, g,£*) has dimension 4n + 3 and defines a
Riemannian foliation (S,F) of codimension 4n with totally geodesic leaves of constant
curvature 1. Furthermore (S, g,£®) is an Einstein manifold.

The first result is due to Kuo and Tachibana [KuTach] and the important observation
that every 3-Sasakian manifold is Einstein is due to Kashiwada [Ka]. For more general
almost contact 3-structures Kuo [Ku] has proven:

THEOREM 2.6: [Kuo| The structure group of any manifold with an almost contact 3-
structure is reducible to Sp(n) x I3 where I3 denotes the three by three identity matrix.

Kuo’s theorem has an important corollary:
COROLLARY 2.7: Every 3-Sasakian manifold is a spin manifold.

We shall also deduce Corollary 2.7 by using the embedding techniques given in the
next section.

In addition, using harmonic theory on compact Sasakian manifolds, Kuo [Ku] has also
shown that on a compact 4n + 3-dimensional 3-Sasakian manifold S the i** Betti number,
b;(S), must be of the form 4¢ whenever ¢ is odd and i < 2n + 2.

Much of the previous work on 3-Sasakian manifolds has concentrated on the regular
case when (S, g, £%) is the total space of a Riemannian submersion [IKon,I2]. The following
is a theorem of Ishihara [I2].

THEOREM 2.8: [12] Let (S, g,£%) be a 3-Sasakian manifold such that the space of leaves
S/F is a Riemannian manifold and the natural projection

m:(S,9) — (8/F,9)
is a Riemannian submersion. Then (S/F,§) is a quaternionic Kahler manifold.
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A converse of this theorem was obtained by Konishi [Kon)].

THEOREM 2.9: [Kon| Let (M, j) be a quaternionic Kdhler manifold with positive scalar
curvature. Then there is a principal SO(3) bundle S over M whose total space admits a
metric g with an associated 3-Sasakian structure.

Konishi also considers the case when the quaternionic Kahler manifold has nega-
tive scalar curvature. This gives a Sasakian 3-structure on S with indefinite signature
(3,4n). We shall not consider this case. In the positive scalar curvature case, there is
an obstruction to lifting the SO(3) bundle to an SU(2) bundle. This obstruction is the
Marchiafava-Romani class € [MR] of the quaternionic Kéhler manifold M, and a result
of Salamon [Sall] says that if the quaternionic Ké&hler manifold is complete with positive
scalar curvature then e vanishes if and only if M = HP™. This result does not hold in the
case of quaternionic Kahler orbifolds, nor if the completeness assumption is dropped.

We generalize these results as follows:

THEOREM 2.10: Let (S, g,£%) be a 3-Sasakian manifold of dimension 4n + 3 such that the
Killing vector fields £€* are complete for a = 1,2,3. Then

(i) (S,g,£%) is an Einstein manifold of positive scalar curvature equal to 2(2n+1)(4n+3).
(ii)) The metric g is bundle-like with respect to the foliation F.
(iii) Each leaf L of the foliation F is 3-dimensional homogeneous spherical space form.

(iv) The space of leaves S/F is a quaternionic Kahler orbifold of dimension 4n with
positive scalar curvature equal to 16n(n + 2).

Hence, every complete 3-Sasakian manifold is compact with finite fundamental group and
diameter less than or equal to .

PROOF: The last statement is a direct consequence of the first statement and Myers’
theorem [Mi|. Next we prove the first statement. Since the vector fields {* are Killing
vector fields, the metric g is bundle-like by lemma 1.7. Furthermore, since these vector
fields are complete the foliation F has compact leaves. So, by Molino’s theorem 1.8, the
space of leaves S/F is an orbifold O of dimension 4n, and by proposition 1.9 the natural
projection w : S—S&/F is a Riemannian submersion on the dense open set of regular
leaves. The fact that the space of leaves §/F has a quaternionic Kéahler structure follows
from Ishihara’s theorem 2.8 applied to the dense open set of leaves. Now the dimension
of each leaf is three, and all leaves are totally geodesic of constant curvature 1 by 2.5. In
particular, O’Neill’s tensor field T' vanishes, and so for each a = 1, 2,3 the tensor field
®? restricted to any leaf £ defines a Sasakian structure there. Hence, (g, ®%,£%)q=1,2,3
restricted to £ makes £ a 3-Sasakian manifold of dimension 3. These were classified by
Sasaki [Sasl], and it follows that each leaf is a 3-dimensional homogeneous spherical space
form with scalar curvature 6. This proves everything except for the last statement about
the scalar curvature.

To compute the scalar curvature we first determine the Einstein constant A of g.
Using proposition 1.9 we can apply [Bes: 9.62] to the dense open set of regular points to
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give
1 2
2.11 A= §(6+ | A %),

where A is O’Neill’s tensor. In particular, A is positive and it remains to compute the
O’Neill tensor A to determine the scalar curvature explicitly. Again proposition 1.9 shows
that m : S—0O is a locally trivial orbifold bundle. The generic fibres have the form
SU(2)/T where T is a discrete subgroup of SU(2). In the case that I' = id or Zs, S is
a principal orbifold bundle with group SU(2) or SO(3), respectively. Otherwise S is an
associated bundle. In either case we show that the three 1-forms n? for a = 1,2, 3 define
the components of a connection in the orbifold bundle &, and that we can compute the
tensor field A from the curvature of this connection. We have

LEMMA 2.12: The three 1-forms n® with a = 1,2,3 are the components of a connection
1-form in the orbifold bundle S.

PRrROOF: Choosing a basis e, where a = 1,2,3 for the Lie algebra sp(1) and defining
n = n%e, we obtain a Lie algebra valued 1-form which annihilates the distribution #
orthogonal to V with respect to the metric g. To see that the horizontal distribution H is
equivariant and thus defines a connection on § with connection form 7, we use Proposition
2.2 (vi) to compute

0 = 2g9(®*%* X) = dn*(¢® X)

= (X)) — Xn*(€") — n*([€", X])

= 1°([¢" X))
Here X is a horizontal vector field and 1 < a,b < 3. But this implies that [{%, X] is
horizontal for all a =1, 2, 3. |
LeEMMA 2.13: For any pair of horizontal vector fields X and Y on S
(i) AxY = Y, , g9(®"X,Y)e
(ii)) Ax&* = d°X.

Proor: (i) follows from Proposition 2.2 (vi) and the fact that if  is the curvature two
form of the principal connection 7, then [Bes: 9.54] shows that

1
AxY = —59—19()(, Y),

where 6 : V—sp(1) denotes the isomorphism between the vertical vector space V at a
point of § and the Lie algebra sp(1). (ii) now follows from equation (i) and [Bes: 9.21d].
|

Returning to computation of the scalar curvature in the proof of theorem 2.10, we let
X; for 1 < ¢ < 4n denote a local orthonormal basis of the horizontal distribution H, and
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compute using lemma 2.13, Proposition 2.2 (vi), and [Bes: 9.33a], viz.

4n 4n 3
A2 = Y g(Ax, Ax,) = D g(Ax,€% Ax,£%)
2.14 =1 1=1 a=1
n 3 an 3
— ZZQ((I)‘IXi,(I)aXi) = ZZQ(X,”XZ) = 12n.
i=1a=1 i=1a=1

Substituting equation 2.14 into equation 2.11 and using the relation between the scalar
curvature and the Einstein constant establishes Theorem 2.10 part (iv). [

REMARK 2.15: The homogeneous spherical space forms in dimension 3 are well known.
They are Sp(1)/I" where I is one of the finite subgroups of Sp(1), namely:

(1) I' =id.

(2) T = Z,, the cyclic group of order m.

(3) T' = D%, a binary dihedral group with m is an integer greater than 2.
(4) T' = T* the binary tetrahedral group.

(5) T' = O* the binary octahedral group.

(6) T' =TI* the binary ocosahedral group.

Thus Theorem 2.10 part (iii) shows that every leaf of any 3-Sasakian manifold is of the
form Sp(1)/T" where I is one of the groups listed above.

An interesting corollary of Theorem 2.10 and a theorem of Bérard-Bergery [BéBer],
which rescales the metric along the fibres, is

COROLLARY 2.16: Every complete 3-Sasakian manifold has two distinct Einstein metrics
of positive scalar curvature. The first is given in Theorem 2.10 part (i) and the second
FEinstein metric has scalar curvature

12n
2n + 3

22n+1)(4n+9) —

By distinct here we mean nonhomothetic.

PROOF: The first statement follows from theorem 2.10 and [Bes: 9.73]. To compute the
scalar curvature for the second Einstein metric we use [Bes: 9.70d] and [Bes: 9.74]. [

REMARK 2.17: Given any Einstein metric we can easily obtain a one parameter family
of Einstein metrics by scaling the metric. The scale factor, however, for the 3-Sasakian
metric g is fixed by the 3-Sasakian structure. This is not the case for the second Einstein
metric. Perhaps a more meaningful invariant for the second Einstein metric is not its scalar
curvature, but the ratio of the scalar curvature of the second (non 3-Sasakian) Einstein
metric to the scalar curvature of the first (3-Sasakian) Einstein metric. This ratio is given

by

6(n+1)

2.18 1 ]
T enrEn+1)
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Now let O be any quaternionic Kahler orbifold of positive scalar curvature. In general
Konishi’s principal SO(3) bundle over the dense open set of regular points of O extends to
an orbifold bundle over O whose total space is an orbifold, but not necessarily a smooth
manifold. We will say that the quaternionic Kahler orbifold is a good orbifold if the total
space S of the principal SO(3) bundle over O is a smooth manifold. We have the following
corollary of our main theorem.

COROLLARY 2.19: There is a one-to-one correspondence (up to covering) between simply
connected 3-Sasakian manifolds of dimension 4n+3 and good quaternionic Kahler orbifolds
of dimension 4n with positive scalar curvature equal to 16n(n + 2).

REMARK 2.20: A complete quaternionic Kahler manifold M of positive scalar curvature is
necessarily simply connected [Sall]. This follows from a theorem of Kobayashi [Kob] which
says that any complete Kahler manifold with positive definite Ricci curvature is simply
connected, and a theorem of Salamon [Sall| saying that the twistor space of a quaternionic
Kahler manifold with positive scalar curvature is Kahler-Einstein with positive scalar
curvature. It would be interesting to see whether this result generalizes to the case of
quaternionic Kahler orbifolds.

Finally, we give some general results concerning the curvature of any 3-Sasakian
manifold. Since the curvature of any Riemannian manifold is completely determined
by its sectional curvature and the sectional curvature of any Sasakian manifold [YK] is
completely determined by the ®-sectional curvature, we essentially give the latter.

PROPOSITION 2.21: Let (S, g,£%) be a 3-Sasakian manifold and let K and K denote the
sectional curvatures of g and its transverse component g, respectively. Then if X is any
horizontal vector field of unit length on S, we have

(i) K(£%,¢%) =1 wherea+1=0b (mod 3).
(i) K(X, &) =1.
(iii) K(X,9°X)=K(X,®*X) — 3.
ProOOF: (i) follows from theorem 2.5, but is also easy to compute directly. Next, notice
that proposition 1.9 implies that we can use [Bes: 9.29] applied to the dense open set
of regular points of S/F and that the equations in proposition 2.2 show that if X is
horizontal of unit length, then the set {X,®'X,®2X,®3X} is an orthonormal 4-frame.

Thus, (ii) follows from [Bes: 9.29b] and part (ii) of lemma 2.13. Finally part (i) of lemma
2.13 implies Ax®?X = £* and thus (iii) follows from this fact and [Bes: 9.29c]. [

Thus the local geometry of any 3-Sasakian manifold determines and is determined by
that of the associated good quaternionic Kahler orbifold.

§3. An Embedding Theorem for 3-Sasakian Manifolds

In [BGM1] we showed how certain 3-Sasakian manifolds naturally arise as the level
sets of hyperkahler manifolds with certain additional properties. In this section we prove a
converse to this result by embedding every 3-Sasakian manifold (S, g,£?) in a hyperkahler
manifold. To begin we recall
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THEOREM 3.1: [BGM1]| Let G be either Sp(1) or SO(3) and let M be a hyperkdhler
manifold admitting a locally free isometric action of G permuting the complex structures
on M. Then there is an Sp(1l) invariant function v and an obstruction section ¢ of the
fourth order symmetric product of the spin bundle S*H on M. If this obstruction section
¢ is constant on M then each level set of v admits a 3-Sasakian structure.

To construct the desired hyperk#hler manifold associated to (S, g,£®) notice that the
cartesian product manifold S x R* has a natural Sp(1) action defined to be the standard
Sp(1) action on S and the trivial action on R .

THEOREM 3.2: Let (S,¢9s,£*) be a complete 3-Sasakian manifold. Then the product
manifold M = S x Rt with the cone metric
3.3 gu = dr® +r%gs

is hyperkéahler in such a way that the obstruction section ¢ associated to the natural Sp(1)
action is constant. Moreover, S x RT is not complete with respect to metric gas and cannot
be completed by filling in the cone point unless S = S*"+3 with its standard Sasakian
3-structure.

PRrROOF: We construct a hyperkihler structure on M = S x Rt as follows: Let ¥ = r%

denote the Euler field on M and for each a = 1, 2, 3 define smooth sections I® of End T'M
by the formulae

I°Y = —3°Y +1°(Y) ¥
v = —¢°,
Here Y is any vector field on M that is tangent to S. Now the action of Sp(1) on

M = 8 x R" extends the £2 to vector fields on M and, by abuse of notation, we let n°
denote the 1-forms n* on S pulled back to M. Hence, on T'S we have

I% % = %0 (—0* + U @7p?)
= (-0 + TR o+ 'V’
= PIPP 4 P @ ¢ — 0 @ P
= —etbepe _ gabiq 4 cobey g ne

— 6abcIc _ (5abid

3.4

where we have used 2.2 and the easily verified identity n® o ®® = —e®*°p°. Additionally,
in the normal direction to & we have

IaoIb\I; — _Iagb — @agb_na(gb)‘ll — —€abcfc—5ab\ll — GabCIC\IJ—dab\IJ.

Thus, the I*’s form an almost quaternionic structure on M. Furthermore, if X and Y are
tangent to & then equation 2.2.v shows that

gu(I%X,1°Y) = gp(—D°X +n%(X)U, —B2Y + n2(Y)¥)
= gm(2"X, 2%Y) +n*(X)n*(Y)gm (¥, ¥)
= r2gs(®*X, DY) + n*(X)n*(Y)r?
= r2gs(X,Y) — r2n*(X)n*(Y) + r2n*(X)n*(Y)
= r2gs(X,Y) = gu(X,Y),
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whereas, in the normal direction,
gu (I, I°0) = gu(€°,€%) = 1° = gu (¥, D).
Hence, gps is almost hyperhermitian.

To prove that (M, gps) is hyperkdhler we show that the complex structures I¢ are
parallel, i.e., that VI* = 0. This then implies that the almost complex structures /I* are
integrable and that Hermitian structure (M, gpr,I®) is Kéahler for each a = 1,2,3. We
begin by computing the second fundamental form of the embedding § < M obtained as
the level set » = 1. Actually, it is just as easy to compute the second fundamental form
for the family of embeddings determined by arbitrary r.

LEMMA 3.5: Let S be a Riemannian manifold of dimension n, and M = S x Rt the cone
on S with cone metric given by 3.3. Then the second fundamental form s of the embedding
S < M as the level set for any fixed nonzero r is given by s(X,Y) = —gs(X,Y)V. Hence,
the embedding is totally umbilical.

PROOF: Let {0} denote a local orthonormal coframe for the metric gs on S, then we
obtain a local orthonormal coframe {¢*} for the cone metric gps on M by setting

3.6 o' =r0" ¢°=dr,
where 1 <7 < n + 1. The first Cartan structure equations for M are
3.7 do' +wh A" = 0.

Here w” denotes the connection 1-forms with respect to the Levi-Civita connection VM
on M, i.e., if {X,} denote the local orthonormal frame on M dual to {¢#}, then for any
vector field X on M,

VX, = wi(X)X,.

Similarly, the structure equations on S are
3.8 o’ +wi AGT = 0.
This together with 3.6 implies that . .
T (2

wy = 0"

The lemma now follows from this formula and Gauss’ formula
VXY = VXY +s(X.Y),

where X and Y are both vector fields on M that are tangent to S. |

Returning to the proof of theorem 3.2, we next show that VMI* = (. First let X
and Y be vector fields on M that are both tangent to §. Then, using equation 3.4, Gauss’
formula, and lemma 3.5, we have

(VEI)(Y) = VM(I%Y) - 1°V¥Y
= VX (=Y +7*(Y)¥) - I*(VRY — gs(X,Y)V)
= —VZ(9°Y) + gs(X, *Y)U + X1*(Y)U + 9*(V) VM ¥
+ (VYY) — % (VEY)T + gs(X,Y)IT,
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Now Weingarten’s equation and lemma 3.5 implies that VY& = X. Thus, using 2.1 and
2.2, the equation above becomes

— (VZ2)(Y) - @4 (VXY) — gs(2"X, Y)¥ + X0 (Y)¥

3.9
+1%(Y)X + @4(VRY) = n*(VXY)V — gs(X, Y)E™

But equation 3.9 can be rewritten as
[X(@*(Y)) = (VEn)(Y) = n*(VIY)]E + [-(VZ ) (Y) + 7 (Y)X — gs(X,Y)E].

Clearly, the first term in brackets vanishes, and 2.1.ii implies that the second term in
brackets also vanishes. This shows that I* is parallel when X and Y are both tangent to
S. Similar computations show that

(VEIN(Y) = VEI*0) - (VX D)
= —V¥¢—I°X
= V5 +gs(X, £V + &°X — 2 (X)¥
= 0.
Finally, we note from the proof of lemma 3.5 that the connection 1-forms w# have no dr

component. This implies that VMY = 0 for any vector field Y on M, and hence, that
V¥ = 0. This completes the proof that (M, gas) is hyperkéhler.

To compute the obstruction section ¢ defined in [BGM1] notice that equations 2.4
and 3.4 give

3.10 I°¢" = €°¢C + 6%,

Comparing this with equation 2.16 of [BGM1] does indeed show that the obstruction
section ¢ is constant. This proves the first statement of theorem 3.2. The second statement
follows from a result of Yano [Y] as pointed out in [BGM1]. [

REMARKS 3.11:

1. The proof given here that I is parallel with respect to the Levi-Civita connection
VM shows that any Sasakian manifold embeds into a Kihler manifold with a cone
metric. This is a previously known result of Tashiro [Tas].

2. Using the second Cartan structure equations it is easy to show that any cone metric
g is Einstein if and only if gs is Einstein. In particular, the second Einstein metric
on our 3-Sasakian manifold S gives an Einstein metric on M with positive scalar
curvature. Of course, the 3-Sasakian Einstein metric on S induces a Ricci flat metric
on M, as it must since M is hyperkahler.

3. Corollary 2.6 also follows from theorem 3.2.

Finally, we can use Theorem 3.2 to give a generalization of the standard Hopf sur-
face construction which we can then use to construct many new compact hypercomplex
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manifolds. Consider the manifold S x S* obtained from S x Rt as the quotient by the
multiplicative action of Z on Rt generated by r — ar where a # 1 is a fixed positive real
number.

COROLLARY 3.12: Let S be a complete 3-Sasakian manifold, then the manifold S x S*
constructed above has a naturally induced hypercomplex structure. In fact, the product
metric is locally conformally hyperkahler.

PROOF: The Euler vector field ¥ passes to the quotient manifold and generates a circle
action on S'. Thus, it follows from equation 3.4 that the I® define a hypercomplex structure
on S x S. Setting r = e* we see that the product metric

du® + gs

is conformally equivalent to the cone metric from equation 3.3 restricted to an open set in
the fundamental domain of the multiplicative action given above. ]

Combining Corollary 3.12 with the results of sections four and five give explicit ex-
amples of homogeneous hypercomplex manifolds while combining Corollary 3.12 with the
results of section six give, for each n > 2, infinitely many homotopically distinct, non-
homogeneous, 4n-dimensional hypercomplex manifolds (4-dimensional hypercomplex man-
ifolds were classified in [Boy]). Of course, these manifolds described by Corollary 3.12 are
not simply connected. However, Joyce [Joy] noticed that by twisting an associated space
with a certain circle bundle one can obtain simply connected hypercomplex manifolds.
Thus, twisting the manifolds constructed in sections 4 and 6 give explicit examples of
homogeneous hypercomplex manifolds. Moreover, Joyce’s twisting construction general-
izes to the orbifold category to give, together with the results of section 7, infinitely many
homotopically distinct, non-homogeneous, simply connected, hypercomplex manifolds in
dimension 8n — 4 for n > 2. These manifolds are analyzed in [BGM2].

§4. The Classification of Homogeneous 3-Sasakian Structures.

In this section we classify 3-Sasakian homogeneous spaces. To begin notice that the
Killing vector fields £, €2, and &2 which give a Riemannian manifold (S, g) a 3-Sasakian
structure generate non-trivial isometries. Thus, every 3-Sasakian manifold (S, g,£%) has a
nontrivial isometry group I(S,g). Let Iy(S, g) denote the subgroup of I(S, g) consisting
of those isometries that leave the tensor fields &% invariant for all a = 1,2,3. We refer
to elements of I(S, g) as 3-Sasakian isometries. The following theorem was proven by
Tanno.

THEOREM 4.1: [Tanl] Let (S,g,£%) be a complete 3-Sasakian manifold which is not of
constant curvature. Then

dim I(S,g9) = dim Iy(S,g) + 3.
Furthermore, the Killing vector fields £% generate the three dimensional subspace of
isometries that are not 3-Sasakian isometries. Let i and iy denote the Lie algebras of

I(S,g) and Iy(S,g), respectively. Hence, Tanno’s theorem says that if (S,g) is not of
constant curvature, then

4.2 i:io—i-sp(l),
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where + indicates vector space direct sum. However, more is true, namely

LEMMA 4.3: The direct sum in equation 4.2 is a direct sum of Lie algebras, i.e.,

i=1y®sp(1).

This lemma is implicit in Tanno’s work, although he never stated it explicitly there.
It follows immediately from

LEMMA 4.4: Let (S, g,£®) be a 3-Sasakian manifold and X € i be a Killing vector field on
S. Let Lx denote the Lie derivative with respect to X. Then the following conditions are
equivalent

(i) Lx®* =0, a=1,2,3,
(i) Lxn* =0, a=1,2,3,
(iii) Lx€4=0, a=1,2,3.

Furthermore, if any (hence, all) of the conditions above is satisfied, then for any vector
field Y on & we have

(iv) Xn*(Y) = n*([X,Y]).
PROOF: Let X € i, then it follows from equation 2.2.vi and the definition of the Nijenhuis
tensor that the following three conditions are equivalent

£X(I)a = 0, ,CXqu = O, Eana = 0.

and so X € ip if any one of the these conditions is satisfied. Thus, equation 2.2.vii implies
that

0 = LxNg. = Lx(dn®*®EY) = (Lxdn®) @& +dn* @ (Lx£) = dn® @ (Lx&?).

This shows that (i) implies (iii). But since 7® is dual to £* through the metric g and X is
a Killing vector field, (iii) holds if and only if (ii) holds. Next we show that (iii) implies
(i): Since any infinitesimal isometry is an infinitesimal affine transformation with respect
to the Levi-Civita connection, we have for any vector field Y

Lx(®*Y)=LxVyl® =VyLx{" +Vixy§* =2 X,Y].
But the left hand side is
(Lx®*)(Y) + @*[X,Y]
which proves (i). Finally (iv) follows easily from (ii). [

Notice that any of the first three conditions in Lemma 4.4 can be used to describe
the Lie subalgebra iy € i. Moreover, the equivalence of conditions (iii) and (i) says that
the Lie algebra c(sp(1)) of the centralizer of Sp(1) in I(S,g) is precisely ip. Globally, on
the group level we have:

PROPOSITION 4.5: Let (S, g,£%) be a complete 3-Sasakian manifold. Then both the isom-
etry groups I(S, g) and 1y(S, g) are compact. Furthermore, if (S, g,£%) is not of constant
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curvature then either 1(S,g) = Iy(S,g) x Sp(1) or I(S, g) = Iy(S, g) x SO(3). Finally, if
(S, g,£%) does have constant curvature then I(S, g) strictly contains either Iy(S, g) x Sp(1)
or Iy(S, g) x SO(3) as a proper subgroup and Iy(S, g) is the centralizer of Sp(1) or SO(3).

PRroo¥F: The first assertion follows from theorem 2.10 and a standard result of Myers and
Steenrod (cf. [Bes]). Next, since (S, g), Sp(1), and SO(3) are all compact, the direct
sum on the Lie algebra level given in lemma 4.3 also gives a direct product of Lie groups.
The last assertion follows immediately from lemma 4.4 |

We are particularly interested in the case of a transitive isometry group.

DEFINITION 4.6: A 3-Sasakian homogeneous space is a 3-Sasakian manifold (S, g,£&%) on
which Iy(S, g) acts transitively.

PROPOSITION 4.7: Let (S, g,£%) be a 3-Sasakian homogeneous space. Then all leaves are
diffeomorphic and S/ F is a quaternionic Kahler manifold where the natural projection 7 :
S§—S8/F is a locally trivial Riemannian fibration. Furthermore, I(S, g) acts transitively
on the space of leaves S/F.

PROOF: Let ¢ : I4(S,g) X S—S& denote the action map so that, for each a € Iy(S,g),
e = ¥(a,-) is a diffeomorphism of S to itself. Proposition 4.4 implies that the isometry
group I(S, g) contains Iy(S, g) x Sp(1) where either Sp(1) acts effectively or its Zs quotient
SO(3) ~ Sp(1)/7Z acts effectively. Since the Killing vector fields £2 for a = 1, 2, 3 are both
the infinitesimal generators of the group Sp(1) and a basis for the vertical distribution V,
it follows that Sp(1) acts transitively on each leaf with isotropy subgroup of a point some
finite subgroup I' C Sp(1). Now let p; and ps be any two points of S and let £; and
Ly denote the corresponding leaves throught p; and po, respectively. Since Iy(S, g) acts
transitively on S, there exists an a € Iy(S, g) such that ¥,(p1) = p2. Now 1, restricted to
L1 maps £ diffeomorphically onto its image, and, since the Sp(1) factor acts transitively
on each leaf and commutes with Iy(S, g), the image of 1), lies in L£,. But the same holds for
the inverse map v,-1 with £; and L5 interchanged, so the leaves must be diffeomorphic.
Thus, the leaf holonomy is trivial and 7 : S—&/F is a locally trivial Riemannian fibration
by proposition 1.9. The fact that the space of leaves S/ F is a quaternionic Kahler manifold
now follows from Ishihara’s theorem 2.8. Finally, the constructions above shows directly
that Iy(S, g) acts transitively on S/F. [

The following proposition is now immediate from proposition 4.6 and theorem 2.10.iii.

PROPOSITION 4.8: Let (S, g,&%) be a 3-Sasakian homogeneous space. Then S is the total
space of a locally trivial Riemannian fibration over a quaternionic Kahler homogeneous
space M of positive scalar curvature (i.e., a Wolf space) with fibre F' = Sp(1)/T" where T
is one of the finite subgroups of Sp(1) (cf. 2.15).

While this proposition enumerates a complete list of possibilities for all the 3-Sasakian
homogeneous spaces we now show that not all of them actually arise. The following
classification theorem is the main result of this section.

THEOREM 4.9: Let (S, g,£%) be a 3-Sasakian homogeneous space. Then § is precisely one
of the following homogeneous spaces:

Sp(n) 4n—1 Sp(n) dn—1
— ~ §%" ~ RP*"
Sp(n — 1) ’ Sp(n —1) X Zs ’




SU(m) SO(k)
S(Um-2)xU(®1))’ SO(k — 4) x Sp(1)’

Ga Fy Eg Ey Eg

Sp(1)’ Sp(3)’ SU(6)’ Spin(12)’ E;
Here n > 1, Sp(0) denotes the trivial group, m > 3, and k > 7. Furthermore, the fiber
F over the Wolf space is Sp(1) in only one case which occurs precisely when (S, g,£%) is
simply connected with constant curvature; that is, when S = S**~!. In all other cases
F = S0(3).

Proor: If § is a 3-Sasakian homogeneous manifold then each fibre must be a 3-Sasakian
homogeneous 3-manifold. But the fibres are all of the form Sp(1)/T" where I is a finite sub-
group of Sp(1). These space forms are both homogeneous and 3-Sasakian [Sas]; however,
they are not 3-Sasakian homogeneous unless I' = id or Z,. To see this notice that there
are two equivalent 3-Sasakian structures on Sp(1) ~ S® both with the constant curvature
bi-invariant metric. One 3-Sasakian structure is obtained from the right invariant vector
fields on Sp(1) while the other structure comes from the left invariant vector fields. Con-
sider the right invariant structure. Then to obtain a compatible 3-Sasakian homogeneous
structure I' must act on Sp(1) from the left. But if I is neither the identity subgroup nor
Zs then T is not in the center of Sp(1). Hence, the centralizer of I' in Sp(1) is a proper
subgroup of Sp(1). So its dimension is less than two, and thus cannot act transitively on
Sp(1). This proves that the fibre is either Sp(1) or Sp(1)/Zs ~ SO(3).

It follow from this fact and proposition 4.7 that S is a principal Sp(1) or SO(3) bundle
over a Wolf space W. The Wolf spaces are well known [Wol] to have the form G/L;-Sp(1)
where G is a simple compact Lie group and L; (Wolf’s notation) is a certain subgroup of
G. Wolf showed that each homogeneous quaternionic Kéhler manifold W = G/L; - Sp(1)
is the base space of an S? bundle whose total space is one of the homogeneous complex
contact manifolds Z ~ G/L; - S (since identified as the twistor space of W) which were
classified by Boothby [Boo]. Let g© denote the complexification of the Lie algebra g of G.
Swann [Sw] has identified the total space of the dual of the contact line bundle on Z with
the highest root nilpotent adjoint orbit A/ in g®. The nilpotent orbits A/ are well known
[Kr] to have a hyperkéhler structure and Swann has further identified N' with his H* /Z
bundle U(W). It follows from [BGM1: Proposition 4.21] (see also theorem 3.1) that the
level set »~1(1/2) of the hyperkéhler potential has a Sasakian 3-structure. This level set is
easily identified with S ~ G/L;. It is a principal SO(3) bundle over W and a principal S*
bundle over Z. Furthermore, as explained in the remark about the Marchiafava-Romani
class made after Theorem 2.9 the only time that this SO(3) bundle lifts to a Sp(1) bundle
is when the base space is HP?~!. The theorem now follows from the classification of Wolf
spaces [Wol] (cf. [Bes: pg. 409]) or the classification of homogeneous complex contact
manifolds [Boo]. [

Using a similar result for Wolf spaces or homogeneous complex contact manifolds we
have the following immediate corollary.

COROLLARY 4.10: There is a one-to-one correspondence between the simple Lie algebras
and the simply connected 3-Sasakian homogeneous manifolds.

As mentioned above and used in the proof of Theorem 4.8, Sasaki [Sas|, classified 3

23



dimensional 3-Sasakian manifolds. They are precisely the homogeneous spherical space
forms Sp(1)/T where the finite subgroups I' are listed explicitly in remark 2.15. However,
as we have just seen they are not 3-Sasakian homogeneous manifolds unless I' = id or Z,.
Sasaki asked the natural question: Which spherical space forms in dimension 4n —1 admit
a 3-Sasakian structure? We do not solve this problem here, but only mention that Sasaki
also noticed that taking the quotient of the diagonal embedding I'—=Sp(n + 1) gives a
3-Sasakian manifold T'\S*"~1. In this case Iy(S,g) = Sp(n + 1) acts on the left where
the sphere S%"~! is represented by a quaternionic valued column vector of unit length.
The infinitesimal isometries which generate multiplication by a unit quaternion on each
component from the right then give S%*~! and hence I'\S**~! a 3-Sasakian structure.
However, as the homogeneous structure and 3-Sasakian structure are not compatible,
['\S*"~! is not a 3-Sasakian homogeneous manifold. This construction of 3-Sasakian
manifolds appears to be special to the spheres. If one attempts a similar procedure for the
other homogeneous spaces, one obtains a double coset space I'\G/L; which, in general, is
an orbifold.

§5. 3-Sasakian Reduction

In this section we give a general 3-Sasakian reduction procedure which constructs
new 3-Sasakian manifolds from a given 3-Sasakian manifold with a non-trivial 3-Sasakian
isometry group. In section 6 we apply this technique to explicitly construct the Riemannian
metrics for the 3-Sasakian homogeneous manifolds arising from the simple classical Lie
algebras. Then, in section 7, we apply this same technique to explicitly construct new
infinite families of homotopy distinct, non-homogeneous, 3-Sasakian manifolds.

The key to this construction is the quaternionic reduction of 3-Sasakian manifolds
constructed in [BGM1]. Actually, this is a reduction that is associated with a quadruple
of spaces, namely, the quaternionic Kahler space, the corresponding twistor space, Swann
bundle, and the 3-Sasakian Konishi bundle. It incorporates the quaternionic Kahler,
twistor space, and hyperkahler reductions as well as the 3-Sasakian reduction presented
in this section. For example, diagram 6.1 given in the next section pictorially represents
how all these various reductions follow from the flat hyperkéhler metric on H™ \ {0} in the
homogeneous case.

To begin let (S, gs,£%) be a 3-Sasakian manifold with a nontrivial group Iy(S, gs)
of 3-Sasakian isometries. By the embedding Theorem 3.1, M = S x R" is a hyperkahler
manifold with respect to the cone metric gjs given in equation 3.2. The isometry group
Iy(S, gs) extends to a group Io(M, grr) = In(S, gs) of isometries on M by defining each
element to act trivially on RT. Furthermore, it follows easily from the definition of the com-
plex structures I given in equation 3.3 that these isometries Io(M, gpr) are hyperkéhler;
that is, they preserve the hyperkdhler structure on M. Recall [HKLR] shows that any
subgroup G C Iy(M, gpr) gives rise to a hyperkdhler moment map

p:M— g*®R3,

where g denotes the Lie algebra of G and g* is its dual. Thus, we can define a 3-Sasakian
moment map

5.1 ps:S — g*®R?
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by restriction pus = p|S. We denote the components of us with respect to the standard
basis of R3, which we have identified with the imaginary quaternions, by p%. Recall that
ordinarily moment maps determined by Abelian group actions (in particular, those asso-
ciated to 1-parameter groups) are only specified up to an arbitrary constant. This is not
the case for 3-Sasakian moment maps since we require that the group Sp(1) generated
by the Sasakian vector fields £€* acts on the level sets of us. However, we shall see that
3-Sasakian moment maps are given by a particularly simple expression.

PROPOSITION 5.2: Let (S, gs,£%) be a 3-Sasakian manifold with a connected compact Lie
group G acting on § by 3-Sasakian isometries. Let T be an element of the Lie algebra g
of G and let X™ denote the corresponding infinitesimal isometry. Then there is a unique
3-Sasakian moment map ps such that the zero set ug'(0) is invariant under the group
Sp(1) generated by the vector fields £€*. This moment map is given by

1
5.3 < pg, T > = En“(XT).

Furthermore, the zero set ug*(0) is G invariant.

PRrRoOF: Using the embedding Theorem 3.1 we can define the 2-forms wg on S as the
restriction of the hyperkahler 2-forms w®. Then any 3-Sasakian moment map p%(7) deter-
mined by 7 € g satisfies

2dug(r) = 2X7 |wg = —X7|dn°.
As X7 is a 3-Sasakian infinitesimal isometry, lemma 4.3 implies that
0 = Lxn* = d(X"|n")+ X" |dn®,

and thus that
d(2 < p&,m>-n*(X")) = 0.

Hence, locally we have
5.4 2<pug, T>= n"(X")+C?

for some locally defined constants C'?. Now the Lie bracket relations appearing in definition
2.3 and lemma 2.12 imply that

Lepn® = —2¢bepe,

Using this equation and 5.4 we can compute the Lie derivative of the moment map to
obtain
Lep < pg, 7> = —2e%¢ < u, T > +€eCC,

It follows that ,ugl(O) is invariant under the group generated by &% if and only if the
constants C?¢ vanish. So locally 5.4 becomes 5.3, and locally the moment map p%(7) is
clearly unique. But the functions n*(X7) are globally defined on S so equation 5.3 must
hold globally.
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To prove the last statement we can work infinitesimally since G is compact. Let
¢, T € g, then by 4.4.iv we have

5.9 X% (X¢) = (X7, X°]).

Since the bracket in the last term is in g this term vanishes on the zero set u,gl(O) which
proves the G invariance. ]

Henceforth by the 3-Sasakian moment map, we shall mean the moment map us
determined in Proposition 5.2. The embedding Theorem 3.1, Proposition 5.2, and the
results of [BGM1] now imply the following fact.

THEOREM 5.6: Let (S,9s,£%) be a 3-Sasakian manifold with a connected compact Lie
group G acting on § by 3-Sasakian isometries. Let us be the corresponding 3-Sasakian
moment map and assume both that 0 is a regular value of us and that G acts freely on
the submanifold pg'(0). Furthermore, let

vipgt(0) — S

and
w:pgt(0) — p5t(0)/G

denote the corresponding embedding and submersion. Then

(8 = u5'(0)/G,gs, €

is a smooth 3-Sasakian manifold of dimension 4(n—dim g) —1 with metric js and Sasakian
vector fields £* determined uniquely by the two conditions

* * >
l'gs = T gs

and

T (€ 15t (0) = &

Next we have the following fact concerning 3-Sasakian isometries:

PROPOSITION 5.7: Assume that the hypothesis of Theorem 5.6 holds. In addition assume
that (S, gs) is complete and hence compact. Let C(G) C Iy(S, gs) denote the centralizer
of G in Iy(S,g9s) and let Cy(G) denote the subgroup of C(G) given by the connected
component of the identity. Then Co(G) acts on the submanifold ug'(0) as isometries
with respect to the restricted metric t*gs and the 3-Sasakian isometry group IO(S ,gs) of
the quotient (S,js) determined in Theorem 5.6 contains an isomorphic copy of Cy(G).
Furthermore, if Cy(G) acts transitively on S, then S is a 3-Sasakian homogeneous space.

PROOF: By Proposition 4.5 Iy(S, gs) is compact and connected, so it suffices to prove the
corresponding result on the Lie algebra level. Let i3(S, gs), g, and ¢(g) denote the Lie
algebras of Iy(S, gs), G, and Cy(G) respectively. For any x € iy(S, gs) we let X* denote
the corresponding vector field on S. Then lemma 4.4 implies that for any y € ¢(g) and for
all 7 € g we have

XUP(XT) = (X", X9) = 0.
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Hence, Cy(G) acts on the zero set ug'(0). Furthermore, this action is an isometry on
15" (0) since the metric is the restricted metric and Co(G) C Io(S, gs). This proves the
first statement.

Next, by Proposition 5.2, G acts by isometries on pg'(0) so the action of Co(G) on
115" (0) passes to an action of Cp(G) on the quotient S = ug'(0)/G. It is easy to check that
Co(G) acts as 3-Sasakian isometries on (S, js, £%). Notice here that if G' is commutative
then G C Cy(G), and so we do not require that Iy(S, gs) acts effectively. [

§6. 3-Sasakian Reduction and the Classical 3-Sasakian Homogeneous Metrics

In this section we give a general 3-Sasakian reduction procedure and then apply this
technique to explicitly construct the Riemannian metrics for the 3-Sasakian homogeneous
manifolds arising from the simple classical Lie algebras. These metrics are precisely the
ones associated to the three infinite families appearing in Theorem 4.6. We used this tech-
nique in [BGM1] to show that these homogeneous spaces admit a Sasakian 3-structure;
however, this general 3-Sasakian reduction construction was not formulated there and,
except for the trivial case of the S*"~! sphere, the Riemannian metrics were not explicitly
given. Recall that the unit sphere §4*~1 with its canonical round metric g.q, is the sim-
plest example of a 3-Sasakian manifold and that the quaternionic Hopf fibration exhibits
this sphere as the total space projecting to the quaternionic projective space HP"~! with
fibre Sp(1). This is a locally trivial Riemannian fibration where base space HP"~! has its
standard quaternionic Kahler metric. This example is quoted in almost every article on
3-Sasakian geometry. It is important to notice that the canonical round metric on §47~!
is not the standard homogeneous metric on the homogeneous space Sp(n)/Sp(n — 1) with
respect to the reductive decomposition sp(n) ~ sp(n — 1) + m. While it is, of course, the
standard homogeneous metric with respect to the naturally reductive decomposition of
the orthogonal Lie algebra, o(4n) ~ 0(4n — 1) + m this is quite special to the sphere and
orthogonal group. As we shall see, in general the 3-Sasakian metrics given in Theorem 4.6
are not naturally reductive with respect to any reductive decomposition.

The key to the construction of the 3-Sasakian homogeneous metrics for the classi-
cal Lie groups as well as to the general 3-Sasakian reduction scheme is the quaternionic
reduction of 3-Sasakian manifolds constructed in [BGM1]. Actually, this is a reduction
that is associated with a quadruple of spaces, namely, the quaternionic Kahler space, the
corresponding twistor space, Swann bundle, and the 3-Sasakian Konishi bundle. It in-
corporates hyperkahler, quaternionic Kahler and twistor space reductions beginning with
the flat hyperkahler metric on H™ \ {0}. Here we are giving the reduction for homoge-
neous quotients and not the most general orbifold reduction [BGM1]. This homogeneous
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reduction can be represented schematically by the following diagram:

Q(F)
H™ \ {0} — N
R c t(C) t(R)
v QN
Q2 (F
6.1  gin-1 H* et 28 2 #(FI) S
N\ e N\ v
_ Q2 (F)
HP" 1! — w

Here
a. F denotes any of the three (skew) fields R, C, and H.
b. F* denotes the group of nonzero elements of F.
c. RT, the positive reals, is the component of R* connected to the identity.

d. Q(F) C F* denotes the subgroup of F* consisting of elements of norm one. Explicitly
the groups Q(F) are Q(R) = Zs, Q(C) = U(1), and Q(H) = Sp(1), respectively.

f. t(F) =TF*/Z,.
g. n>1+[F:R] where [F : R] is the dimension of F over R.

We now give a general 3-Sasakian reduction theorem. Let (S, gs, &%) be a 3-Sasakian
manifold with a nontrivial group Iy(S, gs) of 3-Sasakian isometries. By the embedding
Theorem 3.1, M = S x R* is a hyperkiihler manifold with respect to the cone metric
gm given in equation 3.2. The isometry group Iy(S, gs) extends to a group Io(M, gpr) =
Iy(8, gs) of isometries on M by defining each element to act trivially on R*. Furthermore,
it follows easily from the definition of the complex structures I® given in equation 3.3
that these isometries Io(M, gpsr) are hyperkéhler; that is, they preserve the hyperkihler
structure on M. Recall [HKLR] shows that any subgroup G C Iy(M, gar) gives rise to a
hyperkahler moment map

p:M— g*®R3

where g denotes the Lie algebra of G and g* is its dual. Thus, we can define a 3-Sasakian
moment map

6.2 ps:S — g* @R

by restriction pus = p|S. We denote the components of us with respect to the standard
basis of R3, which we have identified with the imaginary quaternions, by p%. Recall that
ordinarily moment maps determined by Abelian group actions (in particular, those asso-
ciated to 1-parameter groups) are only specified up to an arbitrary constant. This is not
the case for 3-Sasakian moment maps since we require that the group Sp(1) generated
by the Sasakian vector fields £€* acts on the level sets of us. However, we shall see that
3-Sasakian moment maps are given by a particularly simple expression.
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PROPOSITION 6.3: Let (S, gs,£%) be a 3-Sasakian manifold with a compact Lie group G
acting on § by 3-Sasakian isometries. Let T be an element of the Lie algebra g of G and
let X7 denote the corresponding infinitesimal isometry. Then there is a unique 3-Sasakian
moment map 15 such that the zero set ug"'(0) is invariant under the group Sp(1) generated
by the vector fields £*. This moment map is given by

1
6.4 <psT>= n*(X7).

Furthermore, the zero set ug*(0) is G invariant.

PRrROOF: Using the embedding Theorem 3.1 we can define the 2-forms wg on S as the
restriction of the hyperkahler 2-forms w®. Then any 3-Sasakian moment map p%(7) deter-
mined by 7 € g satisfies

2dpug(r) = 2X" |wg = —X7|dn°.
As X7 is a 3-Sasakian infinitesimal isometry, lemma 4.3 implies that
0 = Lkxn* = d(X"]n*) + X7 |dn*,

and thus that
d(2 < pg,m>-n*(X")) = 0.

Hence, locally we have
6.5 2<pug, >= n"(X")+C?

for some locally defined constants C'?. Now the Lie bracket relations appearing in definition
2.3 and lemma 2.12 imply that

Lean® = —2¢bepe,

Using this equation and 6.5 we can compute the Lie derivative of the moment map to
obtain
Lep < p, 7> = —2€%¢ < p§, 7> +e*°CE.

It follows that ,ugl(O) is invariant under the group generated by &% if and only if the
constants C? vanish. So locally 6.5 becomes 6.4, and locally the moment map p%(7) is
clearly unique. But the functions n*(X7) are globally defined on S so equation 6.4 must
hold globally.

To prove the last statement we can work infinitesimally since G is compact. Let
(,T € g, then by 4.4.iv we have

6.6 X" (X¢) = n*([X7, X°)).

Since the bracket in the last term is in g this term vanishes on the zero set ugl(O) which
proves the GG invariance. ]

29



Henceforth by the 3-Sasakian moment map, we shall mean the moment map us
determined in Proposition 6.3. The embedding Theorem 3.1, Proposition 6.3, and the
results of [BGM1] now imply the following fact.

THEOREM 6.7: Let (S, gs,£®) be a 3-Sasakian manifold with a compact Lie group G acting
on § by 3-Sasakian isometries. Let s be the corresponding 3-Sasakian moment map and
assume both that 0 is a regular value of ugs and that G acts freely on the submanifold
5" (0). Furthermore, let

vipgt(0) — S

and
w:pgt(0) — pgt(0)/G

denote the corresponding embedding and submersion. Then

(8 = u5'(0)/G, gs, €

is a smooth 3-Sasakian manifold of dimension 4(n—dim g) —1 with metric s and Sasakian
vector fields £* determined uniquely by the two conditions

* * >
L'gs = T gs

and

m (€ uz(0) = &

Next we have the following fact concerning 3-Sasakian isometries:

PROPOSITION 6.8: Assume that the hypothesis of Theorem 6.7 holds. In addition assume
that (S, gs) is complete and hence compact. Let C(G) C Iy(S, gs) denote the centralizer
of G in Iy(S, gs). Then C(G) acts on the submanifold pg'(0) as isometries with respect
to the restricted metric t*gs and the 3-Sasakian isometry group Iy (5, gs) of the quotient
(S,§s) determined in Theorem 6.7 contains an isomorphic copy of C(G). Furthermore, if
C(G) acts transitively on S, then S is a 3-Sasakian homogeneous space.

ProOF: By Proposition 4.5 I(S, gs) is compact, so it suffices to prove the correspond-
ing result on the Lie algebra level. Let ip(S,gs), g, and ¢(g) denote the Lie algebras of
Iy(S,9s), G, and C(G), respectively. For any x € iy(S, gs) we let X* denote the corre-
sponding vector field on S. Then lemma 4.4 implies that for any y € ¢(g) and for all 7 € g
we have
XU*(X7) = n*([X¥, X*]) = 0.

Hence, C(G) acts on the zero set pg'(0). Furthermore, this action is an isometry on
5" (0) since the metric is the restricted metric and C(G) C Iy(S,gs). This proves the
first statement.

Next, by Proposition 6.3, G acts by isometries on pg'(0) so the action of C(G) on
115" (0) passes to an action of C(G) on the quotient S = p5'(0)/G. It is easy to check that

C(G) acts as 3-Sasakian isometries on (S, gs,£%). Notice here that if G' is commutative
then G C C(G), and so we do not require that Iy(S, gs) acts effectively. [
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We now apply the reduction Theorem 6.7 to the unit round sphere S**~! to obtain a
description of the classical 3-Sasakian homogeneous spaces. First we set some conventions.
We describe the unit sphere S*"~! by its embedding in flat space and we represent an
element

U1
u = : e H"
Up,

as a column vector. The quaternionic components of this vector are denoted by u® for
the real component and by u® for the three imaginary components. Then the quotients
by the groups R*, C*, and H* in the left most diagram in 6.1 are given by right scalar
multiplication, i.e., u — ug where ¢ € R", ¢ € C*, and ¢ € H*, respectively. In particular,
the infinitesimal generators of the subgroup Sp(1) C H* acting from the right are the
defining vector fields £* for the Sasakian 3-structure. These vector fields are given explicitly
by

4 a 4 _ea,bc b, 9

ous T ud due

where the dot indicates sum over the vector components u; and the subscript » means
that these vector fields are the generators of the right action.

6.9 £ = uf

The group Q(F) C Sp(1) used for the reduction procedure is then given by left scalar
multiplication; i.e., u — ou for ¢ € Q(F). The non-commutativity of the quaternions
distinguishes these two actions. Notice, however, that any r € R commutes with any
u € H"* and this gives rise to the Z, factor that appears in the reduction. Our choice of
hyperkihler structure on H*\{0}, and hence the 3-Sasakian structure on $*"~!, is such
that the left action preserves the hyperkahler structure and hence the 3-Sasakian structure.
Notice here that the corresponding induced left actions on the quotients CP2"~! and
HP"~! preserve the corresponding complex contact and quaternionic Kihler structures,
respectively. The infinitesimal generators of the group Q(H) = Sp(1) acting from the left
are

0 0 0
—4° bey b
6.10 &'=u " Hae —u“-8u0+e“ ‘u " Bae

Our first task in the reduction procedure is to find the zero set of the moment map.
We identify the imaginary quaternions R® with the Lie algebra sp(1) in equation 6.2 and
let q(IF) denote the Lie algebra of Q(F). Then equation 6.2 becomes

6.11 ps 2 ST — q(F)* ® sp(1).

Now ¢(F) can be identified with the pure imaginary elements in the field F. Notice that
q(R) = 0, so that pg is the zero map and ,ugl(O) is the entire sphere S*"~1 in the real
case. Thus, it is convenient to make the following definition.

DEFINITION 6.12: Let F = R, C,H. Then N(F) is the zero set pug'(0).
Next, we need to recall some facts about Stiefel manifolds. Let F” denote the n-

dimensional vector space over F with its natural inner product which we denote by @ - v,
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where u — 1 denotes conjugation in F on each component. Let U(n,F) denote the
subgroup of GL(n,F) that preserves this inner product so U(n,R) = O(n), U(n,C) =
U(n), and U(n,H) = Sp(n). Now let fo’ . denote the Stiefel manifold F-orthonormal &
dimensional frames in ™. It is convenient to introduce the notion of an “opposite field”
[FoP as follows R°? = H, C°? = C, and H°? = R. The Stiefel manifolds that appear in our
3-Sasakian reduction are VT]LF’ (EIPF:R]' As usual these can be represented in matrix terminology

as follows. Let M, (F) denote the n by k matrices over F, then
6.13 VTE(EIIP::R] = {A € Mn,[F:]R](]Fop) ‘ ATA = ]I[IF:]R]}a

where * denotes transpose together with conjugation in F and [y denotes the k£ by k
identity matrix. There is a natural Riemannian metric on VTILF [];:R] given by restricting the
flat metric

6.14 h = tr(dA* - dA)

on M, rr](F?) to VT]LF:E;:R]. We denote this restricted metric by h;. The Stiefel mani-

fold V;F:E];:R] with this Riemannian metric is a homogeneous Riemannian manifold with
homogeneous structure given by

U(n, FP)
U(n— [F:R],For)’

6.15

PROPOSITION 6.16: Under a rescaling N () is precisely the Stiefel manifold Vnﬂ‘: O[I?:R]. Thus,
L:N(F) — g4t

is a smooth compact submanifold of dimension 4n+2 — 3[F : R] on which Q(F) acts freely.
Furthermore, the Riemannian metrics are related by the equation

" 1
U Gcan = []F . R]hl

PROOF: As mentioned above when F = R we have N(F) = $*"~! which is just the Stiefel
manifold V,}f}l. For the remaining two cases we compute the moment map 6.4. First, let
F = H. Proposition 6.3 shows to compute pus we need the 1-forms n* which we can easily
obtain from the flat space metric go and the Sasakian vector fields £ given explicitly by
6.9 as

6.17 n* = u’-du® —u®-du’ — e®*°u’ - du’.

The vector fields that generate the left action of Sp(1) = Q(H) are given by the & in
equation 6.10. Thus, equation 6.4 and a straightforward computation shows that

ab abc..c .0 a ..b_ _c. c(s;lb
0% +€*u-u’ 4+ (u*-u uu3).

(3u’-u’ —u¢-u°
6

6.18 < pd b > =
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The three terms in this equation correspond to the decomposition of

sp(1)* @ sp(1) ~ sp(1) @ sp(1)

into irreducible representations under the action of Sp(1), namely the identity represen-
tation, the adjoint representation sp(1), and the 5-dimensional representation of three by
three traceless symmetric matrices over R. Hence, the zero set of the moment map is
determined precisely by the vanishing of the components of the moment map in each of
these three irreducible representations. It is directly to check that this implies that the
quaternionic components (u’, u®) are mutually orthogonal and satisfy

Thus, a simple scale transformation identifies N(H) with the Stiefel manifold V7§4 in 6.13
and Riemannian metrics are related by the factor of 1/4.

Finally, when F = C, the group Q(C) is a U(1) subgroup of Sp(1). This corresponds
to stabilizing one component in the imaginary quaternions R3, say the i component (for
example b = 1 in equation 6.18). Then the components of the moment map pg are

2 <ps, &> = u-ul+ut -t —u?ou?-uddd
6.19 <pZ &> =uwt-ut—u?-dd
<pd &> = ud-ul +u?-ul

Defining the complex vectors z! = u® + iu! and z? = u? + su® permits us to rewrite

u = z! + jZ2. The vanishing of the moment map in 6.19 gives the conditions

and

Again a simple scale transformation identifies N(C) with the complex Stiefel manifold V,(LCJ
with the Riemannian metrics correspondingly related.

In each case the Stiefel manifolds are known to be smooth compact submanifolds of
S§4n=1 of dimension 4n + 2 — 3[F : R]. Lastly, it is easy check that the left action of Q(F)
is free in each case. |

The free action of Q(F) on N (F) makes N(F) a principal Q(F) bundle over the quotient
N(F)/Q(F). Moreover, given the metric ¢*geqn, on N(F) there is a unique Riemannian
metric § on N(F)/Q(F) such that

m: N(F) — N(F)/Q(F)

is a Riemannian submersion. The group 1(S%"1, g.qn) of 3-Sasakian isometries acting on
S4n—=1 is precisely Sp(n) acting from the left and we have
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LEMMA 6.20: The centralizer C(Q(F)) of Q(F) in Sp(n) in precisely U(n,F°P).

PROOF: Of course Sp(n) C My, n(H) ~ My, »(R) ®r H. By R linearity it suffices to prove
the result on a simple element A ® ¢ € M, ,(R) ®r H. But Q(F) C H is a subgroup for
F =R, C,H and, in every case, is embedded in Sp(n) as the diagonal embedding o — o1,,.
So finding C(QF)) amounts to finding the centralizer Cg ) (H) of Q(F) in H. But it is
direct to check that Co ) (H) = FP. So A ® ¢ commutes with o1, for all o € Q(F) if and
only if ¢ € F°P. ]

Thus, Lemma 6.20, Theorem 6.7, Proposition 6.8, equation 6.15, and Proposition 6.16
imply the following fact.

THEOREM 6.21: With the restrictions on n given in Theorem 4.7, the Riemannian manifold
(N(F)/Q(F), g) is one of the classical 3-Sasakian homogeneous manifolds

U (n,FoP)
U(n — [F: R],For) x Q(F)

listed in Theorem 4.7. Furthermore, the metric § is given explicitly by

1
- [F:R]

J Th1.

REMARKS 6.22:

1. Except for the real case F = R, when the reduction is just given by taking a Zs
quotient, the metric § is not naturally reductive with respect to the homogeneous
space structure and hence § is not the standard homogeneous metric on S. In fact,
the standard homogeneous metric for F = C,H is not Einstein [Bes].

2. There are some duplications in low dimensions due to the following isomorphisms of
the classical Lie groups SO(5) ~ Sp(2)/Zs and SO(6) ~ SU(4)/Z.

Notice that we have the following sequence of fibrations:

QEF) < TR ~ (N(F),t*gean) < (S*", gean)
U(n,F°P .
6.22 SO (3) — U(n_[[[p:]g{] ’Fop;XQ(F) = (87 g) ’
‘vﬂ—o
U(n,F°P ~ Fop &
Un—[FR] ,IéOP)XC)Q(F)Sp(l) ~  (Gry gy 9)

where (GrI,F:EF:R], g) denotes the corresponding Wolf space Grassmannian with its quater-
nionic Kahler metric.
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Thus far we have not been able to explicitly obtain the metrics in the cases of the
exceptional groups appearing in Theorem 4.7 by a reduction procedure from the canonical
unit sphere S*"~!. Nevertheless, Theorem 4.7 guarantees the existence of corresponding 3-
Sasakian homogeneous metrics. As in the classical case they can not be naturally reductive.
This follows from the fact that naturally reductive homogeneous metrics of a compact Lie
group have non-negative sectional curvature (cf. [Bes: 9.87]). But then Proposition 2.21
implies that the Wolf space W with its symmetric quaternionic Kéhler metric would have
positive sectional curvature greater than or equal to 3. For n > 3 a theorem of Berger
([Bes: 14.43]) implies that W = HP"~. If n = 2 then W = CP? with its Fubini-Study
metric which has positive sectional curvature. However, with our normalization one can
check that the sectional curvature takes on all values between 2 and 5. Summarizing we
have

PROPOSITION 6.23: Let (S,g) be a 3-Sasakian homogeneous manifold which is not of
constant curvature. Then the metric g is not naturally reductive with respect to its
homogeneous structure.

To end this section we show how embeddings of spheres in spheres give rise to similar
embeddings of 3-Sasakian manifolds into 3-Sasakian manifolds. Consider the embeddings
Pk §4n—1 4 §4n+3 defined by

6.24 Q/Jk(ll) = (U1, Uk—1, 0, Uky1, ", Up).

Here it is understood that for £ = 1 or n, u; or u, is set equal to 0, respectively. Let
0, : S4"~1 — §47=1 denote the action map for each ¢ € Q(F) and for any positive integer
n. Then the following diagram commutes

S4n—1 ﬁ S4n+3

6.25 b4 b4

S4n— 1 ﬁ S4n+3 .

Now consider the Stiefel manifold N'(®)(F) where I(n) = dim N(F) = 4n 4+ 2 — 3[F : R]
indicates its dimension. Since the group Q(F) acts on the corresponding submanifolds
NY)(F) ¢ §47=1 and N'(»+1)(F) C §4*+3, there is a similar diagram with the spheres
replaced by the submanifolds N'™ (F) and N'™+)(F), and corresponding map 1y, is
obtained by restriction. Again the commutivity of the inclusions 1, with the action
of Q(F) guarentees that there are well defined inclusions Y on the quotients, which by
Theorem 6.21 are the classical 3-Sasakian homogeneous spaces. Thus, foreach k =1,---,n
we have embeddings

U(n,FoP) Pk U(n+ 1,F°P)

N

626 Un—[F:R,F?)x QF)  U(m+1—[F:R,F?)x Q(F)

Furthermore, the maps 1)), are 3-Sasakian in the sense that, for each k, ¢ is an isom-
etry with respect to the corresponding 3-Sasakian metrics and that the corresponding
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3-Sasakian vector fields £2 are 9y related. As with spheres one can iterate this procedure
to obtain nested embeddings of the corresponding 3-Sasakian homogeneous spaces. Also
there is nothing special about the homogeneous examples except that there are sequences
of them labelled by n. One can obtain a sequence of embedded 3-Sasakian manifolds by
3-Sasakian reduction from another sequence of 3-Sasakian manifolds as long as the em-
bedding maps commute with (intertwine) the actions. A non-homogeneous example will
be given at the end of the next section.

There are also corresponding embeddings for the Wolf spaces, together with a com-
mutative diagram of fibrations. Finally, an analogous diagram for the inhomogeneous case
is given in the next section.

§7. Reductions by Deformed Circle Actions

In this section we apply the 3-Sasakian reduction technique described in the previous
section to a “deformed” circle action giving rise to new infinite families of homotopy dis-
tinct 3-Sasakian manifolds. These manifolds can be thought of as “discrete deformations”
of the 3-Sasakian homogeneous manifolds % obtained from the circle action
whose moment map is given by equation 6.17. The idea is quite simple. Instead of consid-
ering a circle S' embedded in Sp(n) = Io(S**~!, gean) as a diagonal subgroup with equal
weights, we now consider the most general circle subgroup of the maximal torus of Sp(n)
embedded diagonally but with unequal weights. By applying the 3-Sasakian reduction
method described in the previous section to this general circle action, we are able to con-
struct new 3-Sasakian manifolds in all dimensions 4n — 1 for n > 2. In the next section we
will study the topology of these manifolds and in section 9 we will give a more detailed
analysis of both the geometry and the topology in dimension 7.

We begin by considering a maximal torus T" of Sp(n) = Io(S**1, gcan). Up to
conjugacy T™ is unique and can be taken to act on S*"~! as the subgroup of norm
preserving diagonal matrices acting on the quaternionic coordinates u of H". Here, as in
the paragraph preceding 6.9, we view u as a column vector and the action is given by
matrix multiplication from the left. Explicitly, we have that the action

é LTy S4n—1 S4n—1
is given by
7.1 O(t,u) = (X iy, ..., 2mitny,)

where t; € R and u; € H denote the 4t* component of t and u, respectively.

Now consider a sequence p = (p1,---,pn) of nonzero integers. For each p € (Z*)",
we can define a “general” circle subgroup U(1)p C T™ by setting

ti = pit
for each 1 <7 <nin 7.1, where ¢t € R. Then the action 0 restricts to the circle action
0. - Sl X S4n—1 S4n—1
b ! —
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given by
7.2 Op(t,u) = (2™ Py, .. e®™Pnly,).

Notice that the case p =1 = (1,---, 1) is precisely the circle action of the previous section.

Next we compute the moment map us(p) : S~ —iR? associated to the circle action
7.2. Here we identify the Lie algebra u(1) with the pure imaginary numbers iR, and we
shall write ps(p)(u) for < ps(p)(u), > . The infinitesimal generators for the action 7.1
of the maximal torus 7™ are given by

0 0 0 0
7da = (Waur s auz)
J

where there is no sum on the repeated index j. The vector field corresponding to the action
of the circle subgroup U(1)p is

n a 8 a
7.3b &(P) = ij (U? Bul- — ujl 8UQ + u; 8U J au ) ij
i=1 ! ¢

The moment map can now be obtained from 7.3b, 6.4, and 6.15. This computation yields
the following lemma.

LEMMA 7.4: The components of the moment map us(p) of the circle action given by 7.2
are

ps(p)(u) = —zZpJ u u +u u; —u?u?—u}o’u;)
Hs(p)(u) = —z‘Zm(u}uﬁ — ujuy)
pE(p)(u) = —zZpJ u u; +u1u3)

Notice that these equations specialize to equations 6.17 in the case that p = 1. That
is, ps(1) is precisely ps of section 6 when F = C. Just as in the homogeneous case
considered in the last section the zero set of this moment map is a fundamental object of
interest.

DEFINITION 7.5: N(p) = pus(p)~(0).

PROPOSITION 7.6: For each p € (Z*)"™ the zero set N(p) of the moment map ps(p) is
diffeomorphic to the complex Stiefel manifold V,%. Thus, N(p) is a smooth compact sub-

manifold of 4"~ of dimension 4n—4. Furthermore, the circle action 0p on S 4n—1 restricts
to a circle action on N(p) which is free if the absolute values |p;| of the components of p
are pairwise relatively prime.

PRrROOF: For each p € (Z*)" we define a linear map Ty, : H* —H" by the equation

7.7 Tou = (VIp1lug, -5 V|pn|un).
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Clearly T, is an isomorphism of quaternionic vector spaces for each p € (Z*)"; however,
it is norm preserving only if | p; |= 1 for all j = 1,---,n. Thus, we define maps ¢p :
S4n—1_>54n—1 by

Tpu
’ | Tpu |
where || - || denotes the standard norm in H". The map ¢, is clearly a diffeomorphism for

each p € (Z*)™. Let ps(1) and p(1) denote the 3-Sasakian and hyperkahler moment maps,
respectively, of the homogeneous case given explicitly by equation 6.17. Then using lemma,
7.4, equations 6.17, 7.7, and 7.8, and the fact that the moment maps are homogeneous
functions of degree 2 in the variables u we have the string of equalities

ps(p)(u) = p(1)(Tpu)
7.9 = p()(|| Tpu || ¢p(u))
= || Tou || ps(1)(dp(u)).

Hence, u € N(p) if and only if ¢p(u) € N(C). Thus, the diffeomorphism ¢, restricts to
a diffeomorphism ¢, : N(p)—N(C). But recall that the identification of N(C) with V,=,

in Proposition 6.14 requires a dilation by a factor of v/2. Composing ¢p with this dilation
gives the required diffeomorphism.

Since the circle action 6 given by 7.2 is a linear map on H", it clearly restricts to the
zero set N(p). Now assume that the integers |p; | are pairwise relatively prime. It follows
from equation 7.2 that the only fixed points on the S**~1 can occur along a quaternionic
coordinate axis, say the k** axis given by u; = 0 for all j # k. In this case the isotropy
subgroup of any such point is the cyclic group Z,, . It is convenient to recall the complex
coordinates z' = u® + su'! and z? = u? + iu? introduce after equations 6.17. In terms of
these coordinates the moment map pgs(p) takes the form

n
2us(p)(z",2°) = —iy pilz}| — |z = 0
7.10 =
ps(p)(z',2°) = —i ) piZz
j=1

whnere = — 1 . ence, € vanisnimg o € moment map resiricte (0] €
here pg = p —ipd. H th ishing of th t tricted to the kP

quaternionic coordinate axis takes the form
1 2 —2.1
pr 2| = prlzx| and prZiz, = 0.

These two equations imply that zi = 22 = 0 which cannot happen on N(p) C S~
Thus, the circle action 6, is free on N(p). [

REMARK 7.11: Notice that there is nothing in the proof that the zero sets N(p) are
compact submanifolds of §4*~1 diffeomorphic to the Stiefel manifolds V,EQ that prohibits
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p from being any real vector in (R*)™. In this sense the N(p) can be thought of as smooth
deformations of VfEQ. Of course, for general p € (R*)™ the quotients defined below in
Definition 7.15 will not be manifolds. Nevertheless, we can think of 3-Sasakian manifolds
S(p) defined below as “discrete” deformations of the 3-Sasakian homogeneous manifold

S(1).

Let tp : N(p) < S*"~! denote the embedding given by the zero set of the moment
map ps(p). We define a Riemannian metric g(p) on N(p) by restricting the canonical
metric on S*"~1, that is g(p) = tpYean- We shall make use of the following simple ob-
servation: Any infinitesimal isometry (Killing vector field) on (S*"~! g..n,) that has the
property that when it is restricted to N(p) it is tangent to N(p) is also an infinitesimal
isometry of (N(p), g(p)). In particular, the 3-Sasakian vector fields {2 and the infinitesimal
generator §;(p) of the circle group U(1)p satisfy this property by Proposition 6.3. More
generally, it follows from equation 6.6 that any Killing vector field in ¢(u(1)p) also satisfies
this property. In particular, the maximal torus T™ acts as isometries on (N(p),g(p))-
Let W,, denote the Weyl group of Sp(n). W, is isomorphic to the semidirect product
(Zo)™ =13, where X, is the symmetric group on n letters, and W, acts on the Lie algebra
t, of the maximal torus by permutations and sign changes. Notice that (Z3)" > %, also
acts naturally on (Z*)"™ by permutations and sign changes. We shall identify this group
with the Weyl group and denote this action by p — wp for w € W,,. Now the Weyl group
W,, can be realized as a subgroup of Sp(n) = Iy(S*™ 1, gean) by the following action
on the quaternionic coordinates u € H": The symmetric group acts by permutations of
the vector components (uq,---,u,) € H*. The [** reflection of W,, acts by sending the
I** component u; of u to ju; and leaving all other components fixed. Taking the direct
product of these actions gives an action of W,, on S4"~1 x (Z,)". It is now easy to check
that

PROPOSITION 7.12: The action of W,, on S*"~! x (Z*)" described above induces an

isometry between (N (wp), g(wp)) and (N(p), g(p)) which preserves the 3-Sasakian vector
fields &2.

It follows from this proposition that without loss of generality we can take the integers
p; to be positive integers and order p = (pi1,---,p,) such that p; < py < -+ < pp.
Henceforth, we shall assume this to be the case unless otherwise specified.

PROPOSITION 7.13: Let p = (p1,- - -, pn) be an n-tuple of pairwise relatively prime positive
integers, and let k be the number of 1’s in p. Then the centralizer C(U(1)p) of U(1)p in
Sp(n) is U(k) x T"F.

PrROOF: An argument similar to that given in the proof of Lemma 6.20 shows that
C(U(1)p) must lie in U(n). It is then a standard computation to check that the centralizer
is as stated. |

Let F : V,°y—N(p) denote the diffcomorphism of Proposition 7.6, and consider the

metric F*g(p) on Vfg. Then the following corollary follows immediately from Proposition
7.13.

COROLLARY 7.14: Let p # 1. Then the metric F*g(p) is not U(n) invariant; hence, it is
not homothetic to the homogeneous metric %hl of Proposition 6.16.
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We now come to our major objects of study.

DEFINITION 7.15: Let p = (p1,p2, -, Pn) be an n-tuple of relatively prime ordered posi-
tive integers. Then

(S(p),3(p))

is the Riemannian manifold N(p)/U(1)p with the unique Riemannian metric §(p) that
makes 7w : N(p)—N(p)/U(1)p a Riemannian submersion.

The following theorem is a direct corollary of Theorems 2.10, 6.7, and Corollary 2.16.

THEOREM 7.16: For each n-tuple p of ordered relatively prime positive integers, the
Riemannian manifold (S(p), §g(p)) is a compact 3-Sasakian manifold; hence, it is a compact
Einstein manifold of positive scalar curvature equal to 2(2n — 3)(4n — 5). The space of
leaves S(p)/F is a compact 4(n — 2)-dimensional quaternionic Kahler orbifold O(p) of

scalar curvature equal to 16n(n — 2). Furthermore, S(p) has a second Einstein metric
nonhomothetic to §(p) with positive scalar curvature equal to 1 + % times the

scalar curvature of §(p).

Our next task is to understand the manifolds S(p) group theoretically. Consider the
subgroup U(2) x U(n — 2) of U(n) given by the block diagonal matrices of the form

A 0
(4 3).

where A € U(2) and B € U(n — 2). The Stiefel manifold VC2 is the homogeneous space

U(n)/U(n — 2) where the subgroup U(n — 2) is obtained by setting A = I, the 2 by 2
identity matrix, in 7.17, and the multiplication is from the right. The generators of the
SU(2) subgroup of U(2) obtained by taking A € SU(2) pass to the quotient and can be
identified with the 3-Sasakian vector fields £2 in equation 6.9 restricted to the submanifold
V,SQ. The subgroup U(1)p acting from the left then shows

PROPOSITION 7.18: The 3-Sasakian manifold S(p) can be identified with the double coset
space

U)p\U(n)/U(n = 2).

If p =1 then the subgroup U(1)p, is central and the the 3-Sasakian manifold S(1) is the
homogeneous space given in Theorem 6.21 when F = C.

REMARK 7.19: Notice that for any p # 1, it follows from Proposition 7.13 that S(p) is
not homogeneous with respect to the U(n) action described above. Actually, in section
9 we shall prove a much stronger result in dimension 7 for a certain infinite subset of the
p; namely, that those S(p) are not homotopy equivalent to any homogeneous space.

Our construction of the 3-Sasakian manifolds S(p) can be summarized in the following
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diagram

7.20

O(p) = S(p)/F

Here 7 is the orbifold projection onto the quaternionic Kéhler orbifold O(p) = S(p)/F,
and 7r£, is the unique Riemannian submersion map that makes the triangle commute. The

quaternionic Kihler metric §(p) is isometric to the associated transverse metric gr(p) to
the bundle-like metric §(p) on S.

PRroOPOSITION 7.21: Let p = (p1,---,pPn) be an n-tuple of positive pairwise relatively
prime integers, so that S(p) is a smooth compact 3-Sasakian manifold. A generic leaf of
the foliation F on S(p) is isomorphic to:

(i) SO(3) if all p; are odd,

(ii)) Sp(1) otherwise.
The isotropy subgroup of any singular leaf is a cyclic subgroup of the circle group U(1) C
Sp(1), corresponding to the complex direction i.

PRrROOF: The proof of the first statement amounts to whether or not the central Zy in
Sp(1) lies in the circle group U(1)p. The conditions for this are that for all 4,5 =1,---,n
there exist positive integers k;, k; such that

2k +1 2%k +1
7.22 itl 2kt )
Di Dj

Now take j > 4, then p; > p; and equality holds if and only if p; = p; = 1. Equation 7.22
becomes

7.23 pj —pi = 2(kjpi — kipj)

whose left hand side is even if p; are odd for all 5. On the other hand, the condition that
the p;’s be pairwise relatively prime implies that at most one p; is even, so if the p; are
not all odd equation 7.23 cannot hold over the integers.

To prove the second statement we compute first on S*"~!. The condition for the
existence of fixed points is that

7.24 2™ty s =
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for some o € Sp(1) and each 1 <1 < n. Recall from the proof of Proposition 7.6 that on
N(p) at least two such w; must be nonvanishing. In terms of the complex coordinates of
equation 7.10 these conditions are

7.25 2mPillg = 2, and e TPl = 27,

where not all z’s vanish. This implies that ¢ must be of the form e2™*® for some real
number s; that is, ¢ € U(1) corresponding to the complex direction i. But the isotropy
subgroup of a leaf must be of the form given in 2.14 and the only such groups that are
subgroups of a circle are the cyclic groups. ]

The singular locus X(p) C O(p) of the 4(n — 2)-dimensional quaternionic Kahler
orbifold O(p) can be rather complicated depending on the choice of p. We shall describe
Y(p) in detail, when n = 3, in the Section 9. Here, we make the following two observations.
First, notice that O(p) is a leaf space of a Seifert fibration [OWag]. Recall that the group
Sp(1), generated by the 3-Sasakian vector fields & acts as isometries on (N(p), g(p))-
Moreover, since Sp(1), acts freely on S**~! it acts freely on the submanifold N(p).
Thus, N(p) is a principal Sp(1) bundle over its quotient N(p)/Sp(1). Now define M (p) =

N(p)/Sp(1)r, then

PROPOSITION 7.26: The group U(1)p acts locally freely on M (p), and thus defines a Seifert
fibration ms : M(p)—O(p) over the quaternionic Kéhler orbifold O(p). Furthermore,
M (p) is a submanifold of quaternionic projective space HIP"~! and is diffeomorphic to the
homogeneous space

U(n)
Uln—2) x SU(2)"

PROOF: First we can check as in the proof of Proposition 7.20 above that the circle
group U(1)p acts locally freely on M (p). The remainder of the proof then follows from
Proposition 7.6 and the following commutative diagram

S(p) « N(p) < St

lm 1 +
|

The embedding M (p) «— HP"~! is realized as the inclusion of the zero set of the
quaternionic Kéhler moment map of Galicki and Lawson [GL]. Also when n = 3 it is
easy to see that M(p) ~ S° We discuss this case in section 9. Finally, we give an
inhomogeneous analog of the 3-Sasakian embeddings described in diagram 6.26 for the
homogeneous case. First, we define maps py : Z" — Z" ! by

7.27 Pk(P) = (pl;--'aﬁ;m"'apn)a
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where 1 < k < n and the ~ means that we have deleted that integer. The embeddings
defined in 6.24 intertwine the actions of the circle groups U(1)p and U(1),,(p) as follows

S4n—1 Yk ; S4n+3
7.28 gpk (P) p
Gan—1 VK y  G4n+3.

Thus, the analysis at the end of section 6 gives the following commutative diagram

S®) 2 S)

7.29 l l
™0 e

OWe(®) 5 O(p).

The corresponding dimensions should be kept in mind here. For example, S(p) has di-
mension 4n — 5 whereas S(px(p)) has dimension 4n — 9. Diagram 7.29 can be used to
simplify the analysis of the singular locus X(p) of the orbifold O(p). In particular, there
are cases when X(p) = |, Xk, where X, are singular sets of orbifolds O(¢x(p)).

In the next section we compute the cohomology ring of the manifolds S(p).
§8. The Integral Cohomology Ring of S(p)

We now prove the following theorem

THEOREM 8.1: Let p = (p1,...,pPn) € Z7} be any n-tuple of pairwise relatively prime posi-
tive integers; that is, ged(p;, p;) = 1 for 1 < i < j < n. Then the 3-Sasakian manifold S(p)
is a compact, simply connected (4n — 5)-dimensional manifold whose integral cohomology
ring H*(S(p), Z) is generated by two classes

b2 € H2 (8(p)aZ) and f2n—1 € H2n_1(8(p),Z)
which satisfy the following relations:

O'n_l(p)bg_l = Oa bg =Y f22n—1 = Oa f2n—1bg_1 = 0.
n
Here 0,,—1(p) = ZPI --+Pj Dy is the (n — 1)t elementary symmetric polynomial in p.
7j=1

COROLLARY 8.2: As abelian groups

0 whent=1,3,...,2n—3,2n,2n+2,...,4n — 6,
Hi(S(p),Z) =< Z when©=0,2,4,....,2n—4,2n—1,2n+1,...,4n — 5,
Ly, _,(py Wwheni=2n—2.
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This immediately gives the following

COROLLARY 8.3: There are infinitely many non-homotopy equivalent simply-connected
compact 3-Sasakian manifolds in dimension 4n — 5 for every n > 3.

PrOOF: Let p(n,d) = (1,...,1,d). Then S(p(n, d)) is a simply-connected, compact, 4n—>5
dimensional 3-Sasakian manifold with H>"~2(8(p), Z) = Z,—1)a+1- 1

Recall that from Definition 7.15 and Proposition 7.6 we have the fibration

U)p — U[(Jrgi)z)

8.4 lw
S(p)-

The long exact sequence in homotopy then implies that S(p) is simply connected and that
m2(8(p)) = Ha(S(p)) = Z. Furthermore, since the Stiefel manifold V,;y = UI(JTE%) is 2n—4
connected, it follows from the Serre spectral sequence for 8.4 that

p _JO0 wheni=1,3,...,2n— 5,
H(S(p)’Z)—{Z Wheni20,2’4,...,2n—4-

But, as S(p) is oriented and compact, Poincaré duality then shows that

i _JO0 wheni=2n,2n+2,...,4n —6,
H(S(p)’Z)_{Z when : =2n—1,2n+1,...,4n — 5.

Thus simple considerations applied to 8.4 directly compute all the cohomology groups with
the exceptions of the two groups in dimension 2n — 3 and 2n — 2. Up to this point the
answer is independent of p. However, it is not easy to see how to use the Serre spectral
sequence associated to the fibration 8.4 to compute the two key groups H?" 3(S(p);Z)
and H*~2(S(p); Z).

Thus, to prove theorem 8.1 we use a spectral sequence argument of Eschenburg [Esch]
which exploits ideas of Borel [Borl]. To begin let M be a compact manifold and U a
compact Lie Group that acts freely on M. Further assume that the cohomology rings of
both M and U are known and one wants to compute the cohomology of M/U. Rather
than using the principal U bundle

8.5 U—s M — M/U

analogous to 8.4 above, Borel replaced M and M /U by homotopy equivalent models so as
to construct a fibration whose Serre spectral sequence is easier to analyze. More precisely,
let U—Ey— By be the universal classifying space bundle for U. Then M is homotopy
equivalent to Fy x M as Ey is contractible and M/U is homotopy equivalent to

M//U = EU XUM
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where U acts diagonally on M and Ey. The point is that the fibration
M — M / U — By

which classifies 8.5 has a good homotopy model

8.6 Ey x M — M//U — By

whose associated Serre spectral sequence is easier to work with than the one associated to
the fibration 8.5.

Eschenburg [Esch] showed that when M = G is a compact Lie group and U is a
subgroup of G X G acting on G by left and right multiplication then it is possible to
compute the differentials in the Serre spectral sequence associated to 8.6. Notice that
while U is a subgroup of G X G and acts freely on G it is not necessary that U be a
subgroup of G. He then made explicit calculations when G = SU(3) and U = U (1) x U(1).
We can use his methods here as Proposition 7.18 shows that

Sp) = UM)p\U(n)/U(n—-2)

is such a space. That is, setting M = G = U(n) and U = U(1)p xU (n—2) the computations
necessary to prove theorem 8.1 follow directly from the methods of [Esch: §3]. Since these
computations are essential to prove corollary 8.3 (and are the first step in understanding
the possible homotopy types of the S(p)), we have included sufficient detail in order to
make the discussion here self-contained.

Eschenburg notes that, as U is a subgroup of G x G, one can use Fqg2 for Ey and
thus construct a bundle map

G = G
5
8.7 G/U = G//U = E'G2 XUG — EG2 Xg2G
‘/p p’
p
BU — Bg2

which is an equivalence on the fibres. Next he points out that the bundle in the right hand
vertical column of 8.7 is easily seen to be isomorphic to the bundle

A
8.8 G — Bg — Bge

where A = B{ is induced by the diagonal map 6 : G—G?. Here the map on the total
spaces
EGr2 /6(G)—>Eg2 X @2 G
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is given by Gz — G2(z,1) for all z € Ege.
It is well-known [Bor2] that

H*(U(n);Z) = Elei,es,...,€2m-1]

is an exterior algebra on generators es; ;1 of dimension 2: — 1 for 2 < ¢ < n. In fact,
H*(U(n);Z) is a connected, associative, coassociative, commutative, cocommutative, finite
dimensional Hopf algebra. Next,

H*(BU(n); Z) = Z[Cl, Coyvney Cn]

where c; is the restriction of the i*" universal Chern class to U(n) and is thus of dimension
2i. Furthermore, the differentials in the cohomology Serre spectral sequence associated to
the universal bundle U(n)—EU (n)—BU (n) are generated by the transgressive differen-
tials

d2i—1(€2i—1) = G-
As Bg2 = Bg x Bg we have
8.9 H*(BU(n)2,Z) = Z[al,...,an,bl,...,bn]

where a; = c¢; ® 1 and b; = 1 ® ¢;.
The Serre spectral sequence associated to 8.8 (for G = U(n)) has

Ey*(A) = H*(By(y;Z)® H*(U(n); Z)
as the cohomology of the base and fibre are torsion free. Let

k3« H*(By(ny2; Z)—E;°(A)

denote the natural projection of the F3°(A) term along the base.

PROPOSITION 8.10: [Borl]

A* = koo : H*(By(n)2; Z) — EX%(A) ¢ H*(U(n);Z).

Using this proposition of Borel and the fact that A* induces the cup product in
H*(Bg) so
A*(u®l) = A*(1®u) = u,

Eschenburg computed the differentials in E;*"(A). Actually, he makes the computation
explicitly when G = SU(3) but correctly points out that it is direct to generalize his
computations and obtain

LEMMA 8.11: [Esch] For all U(n) with n > 3 the differentials
dj : EYY(A)—E; I (A)
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in the cohomology spectral sequence EJ* *(A) converging to H*(Byy); Z) are generated
by

1. dj(e%_l) =0 forj S 1.

2. dzi(e%_l) = ﬂ:kzi(ai - bz) for 1 S 1 S n.

Up to bundle isomorphism we may replace 8.8 for the vertical right hand column in
8.7 to obtain the commutative map of fibrations

U(n) =~ Un)

8.12 Sp) = UDNUMm/UMm-2) — Byu
L

By, xU(n-2) - By (n)2

which is an equivalence on the fibres. Thus, by naturality of the Serre spectral sequence,
we have

LEMMA 8.13: For all U(n) with n > 3 the differentials
dj : B} (p)—E; "7 (p)

in the cohomology spectral sequence E;*(p) converging to H*(S(p); Z) are generated by

1. dj(ezi—1) =0 for j <.

2. doi(egi_1) = tkoip*(a; — b;) for 1 <i < n.
Once again,

ki : H*(By1),xU(n—2); Z)—>E;’O(P)

denotes the natural projection of the E, ’O(p) term along the base in the spectral sequence.
PROOF: That these differentials exist follows directly from naturality. Moreover, the

id
identity map gives an isomorphism ES*(A) = EJ*(r) along the fibres and the differentials
in the first cohomology spectral sequence are all transgressively generated. ]

With these preliminaries established we are now able to prove theorem 8.1.
PROOF OF THEOREM 8.1: Once we compute
p* : H*(By(m)2; Z) — H*(By),; Z) ® H*(Byn-2); Z)

we can apply lemma 8.13 to compute the differentials in the Serre spectral sequence con-
verging to H*(S(p);Z). Recall from Proposition 7.18 that S(p) is a double coset space.
We now describe the action in more detail. We begin with the inclusion

U(l)p x U(n —2) — U(n) x U(n).
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which is the product of the composition mapping

8.14 U) =% s Un)

on the first factor and the natural inclusion

8.15 Uln—2) 2 Un)

on the second factor. Here the maximal torus 7" includes as diagonal matrices into U(n)

in the standard way, and the maps A, and j, are given by

e27rip1t

Ay(t) = - | and jn(B) = (%; g).

e27ripnt

Then the action of U(1)p x U(n — 2) on U(n) is given by the map sending W € U(n) to
Ap (1) Wiy, (B).
We now compute in cohomology. The inclusion map 8.15 implies that
8.16 pr(bi) = p"(1®c) = 1Qy;
for 1 <4 < n — 2. Here the classes ¢; and y; are the i*" Chern classes in H*(BU(n);Z)

and H*(BU (n — 2);7Z), respectively and b; is defined in equation 8.9.

Next, recall that if 7" = U(1) x U(1) x --- x U(1) is a maximal torus in U(n) then
the map in cohomology induced by the natural inclusion ¢, : T*—U(n)

*
n

H*(Bywmy;Z) — H*(T™, Z)

IR
IR

*

Ln
Z[Cl,C2...,Cn] — Z[CL‘l,ZUz,...,SL'n]

is an injection. Here z; € H?(By(1) = CP™;Z) is the two dimensional generator of the
it" factor. In fact, ¢y 1s an isomorphism

:ZLlecy, - -, Cn) — Zlxy, ..., o,)""

> Zloy(x),...,00(X)] C Z[z1,Ts,...,T,]

8.18 tn

onto the polynomial subalgebra of ¥, invariant polynomials which are freely generated by
the elementary symmetric functions in the z;’s.
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Returning to the composition 8.14 notice that if z € H?(By1),;Z) is the two dimen-
sional generator then

8.19 Ap(e) = pia
for 1 <7 < n. This immediately implies that for 1 <i <n

8.20 p*(a) = p*(ci®1) = oi(p)a® ®1

where o;(p) is the i*" elementary symmetric function of the coordinates of p and a; is

defined in equation 8.9.

Finally, the E;*(S(p)) term for the spectral sequence converging to H*(S(p);Z) is
isomorphic to

8.21 Z[.’L’@ ]_, 1® Yiy---, 1® yn—2] ® E[@l, .. .,egn_l].

Equations 8.19, 8.20, and lemma 8.13 imply there are differentials
1. d;j(e2i—1) =0 for j <.
2. da;i(esi_1) = tkoi(0s(P)z* ®1 - 1Qy;) for 1 <i<n—2.
3. dai(ezi1) = tkoi(oi(p)z** ®1) forn — 1 < i < n.

A direct calculation using items 1. and 2. shows that
8.22 E;,;l*_?’ = Z[.’E ® 1] ® E[e2n_3, 62n_1]

where the classes on the right hand side are understood to be the E5,,_3 level equivalence
classes. Theorem 8.1 now follows by using the differentials in item 3. and the fact that
on—1(p) and o, (p) are relatively prime. [

As pointed out in the introduction, Corollary 8.3 shows that there are infinitely many
distinct homotopy types for the S(p) in every dimension 4n — 5 for n > 3. Of course,
two CW complexes may have isomorphic cohomology rings and still not be homotopy
equivalent as Whitehead’s theorem requires the existence of a continuous map on the
space level inducing the isomorphism. Here the invariant ¢,,_;(p), which is the order of
the torsion group H?>"~2(S(p);Z), merely determines the first non-trivial attaching map
in a CW decomposition for S(p).

§9. Strongly Inhomogeneous Einstein Spaces

We now consider the 7-dimensional 3-Sasakian manifolds S(p1, p2, p3) in more detail.
This case, when n = 3, is special as V:,fz ~ SU(3) which will let us write S(p) as a quotient
of SU(3) by a certain circle action. This alternative description permits us to analyze the
associated leaf orbifold space appearing in diagram 7.12 and Proposition 7.26. Finally,
we show, in a very precise way, just how far some of our examples are from homogenous
spaces.
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We begin by considering the diffeomorphism « : SU(3) x U(1)—U(3) defined by

9.1 OJ(A, T) = A’Ta

where A € SU(3), 7 € U(1), and A, is a matrix obtained from A by multiplying the 3"¢
column by 7. In other words the map « is given by the following composition

9.2 SU(3) x U(1) — U(3) x U(3) — U(3),
where the first arrow is the natural inclusion on the first factor and the inclusion j3 given

by 8.15, when n = 3, on the second factor. The second map p is the group multiplication
in U(3). Here the map js is given explicitly by

ja(T) =

O O =
O = O
N OO

Notice that « is not a group homomorphism; however, U(1) acts on SU(3) x U(1) by
multiplication in the second factor, and on U(3) by the inclusion jz followed by right mul-
tiplication. Furthermore, o intertwines these two actions, that is we have a commutative
diagram:

«

SUGB) xU(1) — U(3)

o

SUB)xU(1) — U@3).
Thus, o induces a map of homogeneous spaces

. U3
9.4 &:SU@3) — % = V:%(,:m

that is, & is a diffeomorphism satisfying
&(DA) = Da(A)

for D € SU(3). Explicitly, & is the composition of the natural inclusion SU(3)—U(3)
followed by the natural projection U(3)—U(3)/j3(U(1)). To describe the inverse map we
recall that any B € U(n) can be viewed as n column vectors in C* that are mutually
orthogonal with respect to the standard Hermitian inner product in C"®. Thus, writing
any B € U(3) in terms of its column vectors, B = (by, by, b3), the map &~ is given by

b b b
A1 (s = ! 2 °
05 o (BiUW) = (II by T2 17175 ll)'

It is easy to check that this is independent of the representative of the coset.
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Now consider the circle subgroup U(1), C T of the maximal torus of U(3) with the
conventions adopted in section 7; in particular, p = (p1, p2, p3) and the action on the zero
set N(p) = N(p1,p2,p3) is given by restricting the action 7, given in equation 7.2. We
have a diffeomorphism given by the composition

1 a-1
9.6 G: N(p17p27p3) B— Vt?,(?2 B SU(3)7

where F'is the diffeomorphism given in Proposition 7.6. Thus, the free circle action 6, on
N (p) induces a free circle action ¥, on SU(3). A straightforward computation shows that

™ 0 0 1 0 0
9.7 Ip(r,A) = 0 72 0 JA|O0 1 0 ,
0 0 7P 0 0 7 (Pitp2tps)

where p = (p1, p2, p3). Notice that the image of U(1)p under 9, is a subgroup of S(U(3) x
U(3)) acting on SU(3) by left-right multiplication. We shall denote the quotient of SU(3)
by this circle action by 7 (p1, p2, p3)- Thus, we get an isomorphism of 3-Sasakian manifolds

N(p1,p2,p3) ¢ SU(3)
U U

9.8 8(p1,p2,p3) = - T(p17p27p3)7

where G is the diffeomorphism given in equation 9.6. The metric on SU(3) is ob-
tained by pulling back the metric on N(p;,pa,p3), namely &*(F*g(p)), and the metric
on T (p1,p2,p3) is (G=1)*§(p). Thus, (T (p1,p2,p3), (G™H)*§(p)) is an isometric model for
(S(p1,p2,p3),d(P)). In addition, it is direct to verify that the corresponding 3-Sasakian
vector fields are G-related. Explicitly, the action of the group Sp(1) generated by the
3-Sasakian vector fields on 7 (p1,p2,p3) is that induced by the action of Sp(1) ~ SU(2)
on SU(3) given by

o) [ € T ¢ 7
9.9 A— Al —0c € 0], where _ | € SU(2)
0 0 1 7

We shall now see why this alternative model is so useful. To begin recall the manifold
M(p) = N(p)/Sp(1), appearing in Proposition 7.24. Here M (p) is actually isomorphic
to S° under the isomorphism above as the quotient SU(3) by SU(2) with action given
by equation 9.9. The circle action 9, on SU(3) given in equation 9.7 commutes with the
SU(2) action given in equation 9.9, and thus passes to act on the quotient S°. However,
this action is, in general, not free but only locally free. There is a commutative diagram

SU@B) — SU@B)/UQ1)p

| -

s
55 — 0(p17p27p3)a
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where the maps 7y and 74 are orbifold submersions. In fact, 75 is a Seifert fibration. Now
according to Proposition 7.21 the generic fibre of 7 is

1. SO(3) if o1(p) = p1 + p2 + p3 is odd.
2. Sp(1) if o1(p) is even.
Thus, we need to distinquish the two cases. We have

PROPOSITION 9.11: Let (p1, p2, p3) be a triple of ordered pairwise relatively prime positive
integers. Then the quaternionic Kahler orbifolds appearing in diagram 9.10 are:

(i) O(p1,p2,p3) = CP?(p1 + pa,p1 + p3, p2 + p3) when p1 + pa + p3 is even.
(i) O(p1,p2,p3) = CP?(2rfr2 pitps P2483) whep py + py + ps is odd.

Here the terms on the right are weighted projective spaces.

PROOF: The circle action 9.7 on SU(3) passes to the action on the quotient S° given by
9.12 (21, 22,23) +— (6_2”@”’)3)%1, 6_2”(pl+p3)tzz, ,6_2’ri(p1+p2)tz;:,).

For each triple (p1, p2, p3) the quotient space of S° by this action is known to be a weighted
projective spaces (cf. [GL]). If p1 + p2 + ps is even, then precisely one of the p; is even,
so two of the sums p; 4+ p; are odd and one is even; whereas, if p; 4+ pa + p3 is odd, all the
p;’s are odd and so all the sums p; + p; are even. ]

Next we analyse the singular locus ¥(p1, p2, p3) of the orbifold S(p1, p2, p3). This is a
straigtforward exercise using the action 9.12. Again we distinquish two case:

CASE 1: Let p; + pa + p3 be even. There are two possibilities for X(p1, p2, p3) :

1. Three isolated points. This occurs when the entries in the triple (p;+p2, p1+Pp3, P2+D3)
are pairwise relatively prime.

2. A single copy of S? and an isolated point. This occurs when two of the p; + p; have
a common factor.

CASE 2: Let p1 + pa + ps be odd. Then there are four possibilities for 3(p1, p2, p3):

1. The empty set. This occurs when p = (1,1,1) and corresponds to the regular case
when S(1,1,1) is homogenous and fibres over the standard CP2.

2. Three isolated points. This occurs when the entries in the triple (p1+p2, p1+ps, P2+p3)
are pairwise relatively prime modulo 2.

3. A single copy of S2. This occurs when p = (1,1,2k + 1).

4. A single S? with an additional isolated orbifold point. This occurs in all the other
cases not covered in items 1,2, and 3.

Thus we see that the orbifold locus X(p1,pe,ps3) is either empty (only in the one
regular case), or it consists of either three isolated orbifold points, a 2-sphere with an
additional isolated orbifold point, or a single 2-sphere.

Summarizing the results of this section with the results of previous sections implies
the following theorem.
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THEOREM 9.13: Let (p1,p2,p3) be a triple of ordered pairwise relatively prime positive
integers. Then the manifold T (p1,p2,p3) defined in equation 9.8 is isometric to the 3-
Sasakian manifold S(p1, p2, p3) constructed in section 7. Therefore T (p1,p2,p3) admits a
3-Sasakian structure with a non-homogeneous Einstein metric with scalar curvature equal
to 42. The leaf space O(p1,p2,p3) of the associated 3-Sasakian foliation is an orbifold
which is smoothly equivalent to the weighted projective space

(i) CP?(p1 + p2,p1 + p3,p2 + p3) when p1 + pa + p3 is even.
(i) CP? (Rrfr2 PidPs P2dPs) when py + py + ps is odd.

Here the base orbifold has the quaternionic Kahler orbifold metric (with a fixed scale) con-
structed by Galicki and Lawson [GL], and the singular locus X(p1, p2, p3) that is described
above.

Although we know from Corollary 7.14 that the 3-Sasakian structure on 7 (p1, p2, p3)
is not homogeneous (except in the case when p; = py = p3 = 1) one can still ask if
T (p1, p2,p3) is diffeomorphic or homeomorphic or even homotopy equivalent to a homo-
geneous space. To answer this question it is worthwhile to notice that there is a very
close connection between our 7-manifolds 7 (p1,p2,p3) and the construction of Eschen-
burg [Esch] which motivated the cohomology calculations described in section 8. More
precisely, Eschenburg considers quotients of SU(3) by free circle subgroups of

Thmn C SU3) x SU(3)g ~ SU(3)2.

It is easy to see that all such circle actions are given by the following left-right quotients

. [T 0 0 ™ 0 0
9.14 A— [0 7 0 Al 0o ™ 0 ,
0 0 7 &+ 0 0 7 (mm

where A € SU(3), 7 € S, and the quadruple of integers (k,l,m,n) must satisfy some
additional conditions in order that T} acts freely (see [Esch; prop 21] for the precise

klmn
constraints). When the action is free, Eschenburg denoted the quotient space by M-

Now, Myimn is a simply connected, compact 7-manifold and using the ideas described in
section 8, Eschenburg computed H*(Mgimn;Z) as a graded ring. Not surprisingly, the
result is strikely similar to Theorem 8.1.

THEOREM 9.15: [Esch] As a graded ring H*(Myn; Z) is generated by two classes
by € H*(Myimn,Z) and fs € H*(Myimn, Z)
which satisfy the following relations
b2 =0, b3=0, f2=0, fsb2=0.

Here r = |k? + 12 + kl — (m? + n? + mn)|.

Eschenburg’s Mg, manifolds are related to several other manifolds of general inter-
est. For example, when m = n = 0, Eschenburg’s construction recovers the homogeneous
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Aloff-Wallach spaces My, extensively studied from many different points of view [AW,
KrSt1, KrSt2, KrSt3, Wan, WanZi|. Most interesting to us here is that a straightforward
computation shows that if p; +pa +p3 =0 (mod 3) then the T (py, pa, p3) circle action
given in equation 9.7 can be rewritten as an Eshenburg action in 9.14 with the following
relations between pq, po, p3 and k, I, m,n:

1
k = 3(2101 — p2 — P3),

1
9.16 I = 3(2102 — ps — p1),

1
m = n = §(p1+p2 + p3).

Consequently, we have

PROPOSITION 9.17: If p1+ps+p3 =0 (mod 3) then the 3-Sasakian manifold T (p1, ps, p3)
is diffeomorphic to the Eschenburg manifold My, where (k,l,m,n) is determined by
equation 9.16.

However, the Mg, Riemannian manifolds with the metrics constructed by Eshen-
burg are not 3-Sasakian manifolds so the diffeomorphisms in Proposition 9.17 are not
isometries (except, of course, in the homogeneous case when p = (1,1, 1)).

Most importantly, in his paper Eschenburg introduces the concept of a strongly in-
homogeneous space. Such a space is a compact topological space which is not homotopy
equivalent to any compact Riemannian homogeneous space. He then proves that his man-
ifolds My, are strongly inhomogeneous if 7 = 2 (mod 3). Recall here that r is the
order of the finite cyclic group H*(Mgimn;Z). Actually, Eschenburg’s proof shows much
more. He assumes that M is a compact, closed, oriented connected 7-dimensional smooth
manifold such that

9.18 m(M)=0, wo(M)=27Z, w3(M)=127Z, m4(M)=0,

and then he completely classifies the homogeneous spaces with these properties. In partic-
ular, he deduces that if H*(M;Z) is a finite cyclic group of order 7 then r £ 2 (mod 3).
Thus, the actual proof appearing in [Esch: §4] implies

THEOREM 9.19: If 02(p) = p1p2 +p2p3 +p3p1 =2 (mod 3) then T (p1, p2,p3), and hence
S(p1,p2,p3) are strongly inhomogeneous.

To see that this result is not vacuous notice that
oa(c,e+1,c+2) = 3c2+6c+2=2 (mod 3)

for all odd integers ¢ so we have produced an infinite family of 3-Sasakian strongly inhomo-
geneous 7-manifolds. Moreover, this family exhibits a rather interesting limiting behavior
as ¢ grows. In order to explain this precisely we need to recall that Cheeger [Chel], [Ch2]
has constructed a distance p*((M ,9), (M’ g’ )) between two compact n-dimensional Rie-
mannian manifolds. Considering the convergence in the p*-topology we get the following
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THEOREM 9.20: Let ¢ be any positive odd integer. Then there is a sequence
{S(C7C+ 17C+ 2) gil

of manifolds such that no element S(c,c+ 1, c+2) is homotopy equivalent to any compact
homogeneous space. Furthermore, this sequence converges in the Cheeger p*-topology to
the homogeneous space §(1,1,1) with respect to the Aloff-Wallach metrics.

PROOF: Let ¢ be any positive odd integer. Then the triple (¢,c + 1,¢ + 2) consists of
pairwise relatively prime integers. We have just seen that os(p) = 3¢? + 6c+ 2 = 2
(mod 3) so each S(¢,c+ 1,c+ 2) is strongly inhomogeneous. Thus {S(c,c+ 1,c+2)}. is
a sequence of simply connected, strongly inhomogeneous, 3-Sasakian manifolds of distinct
homotopy types. Furthermore, since

p1+p2+p3 = 3¢+3 = 0 (mod 3)
Proposition 9.17 implies there is a smooth equivalence
S(C, c+ 1, c+ 2) >~ M—l,O,c+1,c+1-

But Eschenburg shows that the curvatures of the elements in the smoothly equivalent
sequence {M(_l’o’cﬂ,cﬂ)}c converge to the curvature of the homogeneous Wallach space
M; 1 [Esch: Proposition 22]. Finally, Wang and Ziller [WanZi: Proposition 4.3] observed
that the curvature convergence considered by Eschenberg is equivalent to convergence
in the Cheeger distance p*. The theorem now follows from the simple observation that
Ml,l ’18(1,1,1) [ |

Notice that the leaf space associated to the 3-Sasakian foliation of S(c,c+ 1,¢+ 2)
is the weighted projective space CP?(2c + 1,2c + 2,2c + 3), which is a 4-dimensional
quaternionic Kahler orbifold with exactly 3 disjoint isolated points. Theorem 9.20 is a
much stronger result than the statement that the Einstein metric compatible with the 3-
Sasakian structure on S(c, c+1, c+2) fails to be homogeneous. This weaker fact is a simple
implication of the theory of homogeneous 3-Sasakian structures presented in section 4 and
was, in fact, already mentioned in [BGM1]. To our knowledge the 3-Sasakian manifolds
appearing in Theorem 9.20 are the first examples of compact, strongly inhomogeneous,
Einstein manifolds of positive scalar curvature.

Theorem 9.20 has an important corollary:

COROLLARY 9.21: For all sufficiently large odd positive integers c, the manifolds
S(e,e+1,¢+2)

admit metrics of positive sectional curvature.

These metrics are obtained as left-right quotients of SU(3) induced by submersions
from a special Riemannian metric g on SU(3) such that g is SU(3)r x Hpg-invariant.
Here H = U(2) C SU(3) is the canonical imbedding, and the quotient M, has strictly
positive curvature for arbitrary p and g. As shown in [AW], all such metrics are given by
the following scalar product in the Lie algebra su(3) :

9.22 <X,Y>= B(X,Y)+tB(Xg,Ya),
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where t € (—1,0) U (0,1/3), B is an Ad-invariant scalar inner product and Xy is the
orthogonal projection of X to H = U(2).

§10. Concluding Remarks

The geometry of the Einstein manifolds considered in the last three sections is quite
rich. In particular, it is natural to ask about relationships between S(p) and S(p’) under
the various types of equivalence: homotopy type, homeomorphism, diffeomorphism, and
isometry. The first problem is to classify the 3-Sasakian manifolds S(p) up to homotopy
type. In dimension seven, theorem 8.1 implies that, as a CW complex,

S(p1,p2,p3) = ([(S*VS®)Uset]Uge®) Uy e’

and the order of the torsion group H*(S(p);Z), determines the first non-trivial attaching
map

[f] = (1,02(p1,p2,p3)) € m3(S*VS*)2Z DL,

Similarly, the other attaching maps g and h are functions of (pi,pa,p3s) which must be
determined explicitly to classify the S(p1,p2,ps) spaces up to homotopy type. We note
that a similar question remains unanswered even in the case of the homogeneous Aloff-
Walach spaces My, ; [AIWal.

Next it would be very interesting to classify the spaces S(p) up to homeomorphism
and diffeomorphism type. Again, in dimension seven, this can be done in principle by
computing the Kreck and Stolz invariants [KreSt1, KreSt2]. We recall that Kreck and Stolz
studied smooth compact closed oriented seven manifolds M7 whose integral cohomology
ring is generated by two classes by € H2(M7,7Z) and f5 € H®(M",7Z) subject to the
relations:

(M2 =0, b3=0, f2=0, fsb2=0.

Here i(M7) € Z. Kreck and Stolz associate to each such M7 three homeomorphism invari-

ants
5(M") € Q/Z fori=1,2,3

and three diffeomorphism invariants
si(M") € Q/7Z fori=1,2,3

which taken together completely determine the homeomorphism and diffeomorphism type
of M7. As an application of the general theory they compute these invariants [KreStl,
KreSt2] for the Wang-Ziller spaces Wy ; = (S3x S®)/Tj; [WanZi], and for the Aloff-Wallach
spaces My, ;. In particular, they discovered that there are examples of Aloff-Wallach spaces
which are homeomorphic but not diffeomorphic [KreSt2].

Thus, Theorem 8.1 implies that the Kreck-Stoltz invariants exist and determine the
homeomorphism and diffeomorphism type of the S(p1, p2, p3) spaces. Once again, it is nec-
essary to compute s;(S(p1,p2,p3)) and 5;(S(p1, 2, p3)) as explicit functions of (p1, p2, p3)
to classify these manifolds. Given the parallels between our manifolds as bi-quotients of
SU(3) by circle subgroups of S(U(3) xU(3)) and the Aloff-Wallach spaces, it is reasonable
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to also expect examples that are homeomorphic but not diffeomorphic in our case. Notice
that, in some sense, our examples are more plentiful in that every odd integer is realized as
the order of H*(S(p1, p2, p3); Z) for some p. Also it is worth noting that the two sequences
of 3-Sasakian 7-manifolds

(3c* + 6c+1)

{S(c,c+ 1,c—l—2)}cEZ B and {8(1,1,

)}CEZodd’

are indistinguishable in terms of their integral cohomology rings. Yet geometrically, for
each fixed c, the corresponding pairs are very different. For instance, the spaces of leaves
are not the same, and the 3-Sasakian metrics are clearly not isometric. Also, as ¢ tends
to infinity in the p* Cheeger distance, it is clear that the limits are different. There are
many more sub-families in S(p1, p2, p3) with similar interesting properties. All this makes
the homeomorphism and diffeomorphism classification problem for these spaces even more
intriguing.

Finally, it seems likely that for p,p’ € (Z*)™ the Riemannian manifolds (S(p), g(p))
and (S(p’), g(p’)) are isometric if and only if there is an element w in the Weyl group W,
of Sp(n) such that p’ = wp.

More recently, Kreck and Stoltz [KS3| considered a Q-valued invariant s(M,g) for
positive scalar curvature metrics on closed (4k — 1)-dimensional spin manifolds M with
vanishing real Pontriagin classes. They computed this invariant for the Wang-Ziller spaces
Wy, and for the Aloff-Wallach spaces Mj, ;. They showed that there are manifolds in the
Wy, family for which the moduli spaces R}, (M)/Dif f(M) of Riemannian metrics of
positive Ricci curvature have infinitely many components. Furthermore, they showed that
there are manifolds in the My, ; family for which the moduli space R, (M)/Dif f(M) of
metrics of positive sectional curvature is not connected. Each S(py, p2, p3) manifold admits
two Einstein metrics of positive scalar curvature. These are in the same component of the
moduli space R, ,(M)/Dif f(M). As shown in section 9, some of the S(p1, p2, p3) spaces
admit metrics of positive sectional curvature as well. In principle, one could compute the
|s|-invariant of Kreck and Stoltz [KreSt3] for our spaces. It would be interesting to see if
there are manifolds (perhaps in the S(¢,c+ 1, ¢+ 2) family?) for which the moduli space

of positive sectional curvature metrics R}, .(M)/Dif f(M) has more than one component.

Lastly, how much of the discussion above for the 7-dimensional case extends to the
general (4n — 5)-dimensional situation? For example, should one expect some strongly
inhomogeneous Einstein manifolds among S(p)? Is it possible that S(p) admit metrics of
positive sectional curvature? This last question seems particularly intriguing as the only
known simply connected manifolds of dimension > 24 admitting such metrics are spheres
and projective spaces over C and H.
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