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0. Introduction
Some Problems and Questions

We want to ask questions regarding the existence of pos-
itive Ricci curvature metrics (including the case constant
positive Ricci curvature, i.e., Einstein with positive Einstein
constant) on contact M?"*1, Let us start with

e dim(M)=3: Well-know result of Martinet says that very
orientable 3-manifold admits a contact structure. Another
celebrated theorem of Hamilton shows that proving exis-
tence of a positive Ricci curvature on every simply connected
3-manifold is equivalent to proving Poincaré Conjecture.
On the other hand Every Einstein 3-manifold is of constant
curvature.

e dim(M)=5: In 1965 Barden proved the following remark-
able theorem

THEOREM: The class of simply connected, closed, oriented,
smooth, 5-manifolds is classifiable under diffeomorphism.
Furthermore, any such M is diffeomorphic to one of the
spaces M., .. .k, = X;# My, # - - #My,, where —1 < 5 <
00, s > 0,1 < ky and k; divides k; 41 or k;11 = 00. A com-
plete set of invariants is provided by Ho(M,7Z) and an ad-
ditional diffeomorphism invariant i(M') = j which depends
only on the second Stiefel-Whitney class w?(M).

In these lectures we will refer to a simply connected, closed,
oriented, smooth, 5-manifold as a Barden manifold.



BUILDING BLOCKS

X_1 :SU(3)/SO(3), HQ(X_l,Z) :ZQ,

Xo = non — trivial S® bundle over S?; Hy(X,Z) = Z,
Xj ] EN) HQ(Xjaz) :ZQj @ZW

XO - 55,

My = 5% x S° Hy(My,7Z) = Z,

My, «a€N; Hy(My,7Z)="7q® Za

When M is spin i(M) = j7 = 0 as is w*(M) = 0 and Bar-
den’s result is the extension of the well-known theorem of
Smale for spin 5-manifolds. By an old theorem of John Gray
M admits an almost contact structure when 7 = 0,00 and

by another result of Geiges M is in such a case necessarily
contact. We have the following inclusions:

{Barden Manifolds}
U
{Contact Manifolds} O {Sasakian Manifolds}
U
{Spin Manifolds}
U
{Positive Sasakian Manifolds}
U
{Sasakian — Einstein Manifolds}



A. Which Barden Manifolds admit metrics of positive
Ricci curvature?

The expected answer is ALL but remarkably little is known
about the subject. One positive result was proved by Sha
and Yang which, in dimension 5, reads

THEOREM: #n(S? x S3) admits a positive Ricci curvature
metric for all n € N.

In addition, the symmetric metrics on S°, X_; and a bundle
metric on X, are also of positive Ricci curvature.

B. Which Barden Manifolds admit Einstein metrics of
positive Ricci curvature?

There are several constructions that lead to such Einstein
metrics in dimension 5.

[Kobayashi Bundle Construction| An old construction
of Kobayashi asserts that certain unique simply connected
circle bundle over any del Pezzo surface with a Kahler-
Einstein metric admits an Einstein metric of positive scalar
curvature. Existence results of Siu, Tian-Yau, and Tian set-
tle the problem as we have

THEOREM: The following del Pezzo surfaces admit Kahler-
Einstein metrics: CP2, CP! x CP!, CP2#nCP2, 3 <n < 8.
Furthermore, the moduli space of K-E structures in each
case is completely understood.

There are two del Pezzo surfaces which do not admit any
K-E metrics due to theorem of Matsushima: the existence is
obstructed by holomorphic vector fields. These are blow-ups
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of CP? at one or two points.

As and immediate consequence, for 5-manifolds, we have the
following (Friedrich-Kath, Boyer-Galicki):

THEOREM: Let S = S°#I(S5% x S3).

1) For each | = 0,1,3,4, there is precisely one regular
Sasakian-Finstein structure on S;.

2) For each 5 <[ < 8 there is a 2(I—4) complex parameter
family of inequivalent regular Sasakian-FEinstein struc-
tures on §;.

3) Forl = 2 orl > 9 there are no regular Sasakian-FEinstein
structures on S;j.

[Homogeneous Einstein Metrics| The symmetric met-
rics on Xo = S°, X_; = SU(3)/SO(3) are Einstein. Fur-
thermore, My, = S? x S° admits infinitely many homoge-
neous Einstein metrics (Wang and Ziller).

[Bohm Metrics| Bohm has explicitly constructed cohomo-
geneity one Einstein metrics on S® and $? x S3.

e dim(M)=2n+1 In higher dimensions there are many con-
structions of positive Ricci curvature metrics as well as Ein-
stein metrics. We will be more selective in our choice of
problems and will restrict our interest to the case when M

is homeomorphic (but not necessarily diffeomorphic) to the
sphere S27+1,

Questions Al: Do any exotic 7-spheres admit metrics of
positive Ricci curvature?

This question was answered by Wraith who showed that
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THEOREM: All spheres which bound parallelizable manifolds
admit metrics of positive Ricci curvature.

By a result of Hitchin it is known that some exotic spheres
(first in dimension 9) cannot admit a metric of positive scalar
curvature. In particular such spheres will not admit metrics
of positive Ricci curvature. It is still not know if any of the
exotic spheres admit metrics of positive sectional curvature.

Any standard sphere S™ admits a metric of constant
sectional curvature. These canonical metrics are homoge-
neous and Einstein. The spheres S*™*3 m > 1 are known
to have another Sp(m+1)-homogeneous Einstein metric dis-
covered by Jensen in 1974. In addition, S'° has a third
Spin(9)-invariant homogeneous Einstein metric discovered
by Bourguignon and Karcher. In 1982 Ziller proved that
these are the only homogeneous Einstein metrics on spheres.
No other Einstein metrics on spheres were known until 1998
when Bohm constructed infinite sequences of non-isometric
Einstein metrics, of positive scalar curvature, on S°, S¢, S7,
S8, and SY. Bohm’s metrics are of cohomogeneity one and
they are not only the first inhomogeneous Einstein metrics
on spheres but also the first non-canonical Einstein metrics
on even-dimensional spheres. Even with Bohm’s result Ein-
stein metrics on spheres appeared to be rare.

Questions B1: Are there other inhomogeneous Einstein
metrics on standard spheres?

Questions B2: Do some exotic spheres admit Einstein met-
rics of positive scalar curvature?



Some Answers and Theorems

THEOREM 1: [Boyer,—| For every integer k > 2 that is ei-
ther relatively prime to 3 or 2, there exist cohomogeneity 4
Sasakian-FEinstein metrics, depending on two real parame-
ters, on a simply connected rational homology 5-sphere M}
with wo(M?) = 0, and Hy(M},Z) having order k*. Fur-
thermore, in each odd dimensions there are infinitely many
rational homology spheres admitting families of Sasakian-
FEinstein metrics with one dimensional isometry group.

THEOREM 2: [Boyer,—,Nakamaye| For every integer | > 1,
1#(S? x S3) admits a Sasakian metric with positive Ricci
curvature.

THEOREM 3: [Boyer,—,Nakamaye| All spheres which bound
parallelizable manifolds admit Sasakian metrics of positive
Ricci curvature.

THEOREM 4: [Boyer,—,Nakamaye] S; = [#(S5? x S?) admit
infinite families of quasi-regular Sasakian-FEinstein metrics
for 1 <1 <9. & admits at least 14 quasi-regular inequiva-
lent Sasakian-FEinstein metrics.

THEOREM 5: [Boyer,—,Kolldr] On S® we obtain at least 68
inequivalent families of Sasakian-Finstein metrics. Some of
these admit non-trivial continuous Sasakian-Finstein met-
rics deformations. The biggest constructed family has has
(real) dimension 10.

THEOREM 6: [Boyer,—Kollar] AlIl 28 oriented diffeomor-
phism classes on S” admit inequivalent families of Sasakian-
FEinstein metrics structures, some of them (in each diffeo-
morphism class) depending on moduli.
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In each case, the number of families ranges from 231
to 452. Moreover, there are fairly large moduli. For exam-
ple, the standard 7-sphere admits an 82-dimensional family
of Sasakian-Einstein metrics. All these metrics have one-
dimensional isometry group.

THEOREM 7: [Boyer,—,Kollar] The (4n + 1)-dimensional
standard and Kervaire spheres both admit many families
of inequivalent Sasakian-FEinstein metrics for each n > 2.

A partial computer search yielded more than 3 - 10°
cases for S° and more than 10° cases for S'3, including a
21300113901610-dimensional family. The only Einstein met-
ric on S'3 known thus far was the standard one!

CONJECTURE: [Boyer,—,Kollar| All odd-dimensional homo-
topy spheres which bound parallelizable manifolds admit
Sasakian-Finstein metrics.

THEOREM 8&: [Boyer,—,Kollar, Thomas] The conjecture is
true in dimension 11 and 15. More precisely, each homotopy
sphere (992 possible diffeomorphism types) in dimension 11
admits at least one Sasakian-FEinstein metric and each homo-
topy 15-sphere which bound a parallelizable manifold (8128
possible diffeomorphism types) admits at least one Sasakian-
Finstein metric.

THEOREM: [Kollar] For every [ > 6, there are infinitely
many (2] — 2)-dimensional families of Einstein metrics on

S = I#(S8? x S3).



1. Contact and Sasakian Manifolds

Contact transformations arose in the theory of Ana-
lytical Mechanics developed in the 19th century by Hamil-
ton, Jacobi, Lagrange, and Legendre. But its first system-
atic treatment was given by Sophus Lie. Consider R?"?*!

with Cartesian coordinates (z!,---,z™;y!,---,y"; 2), and a
1-form 7 given by
(1.1) n:dz—Zyidxi.

It is easy to see that n satisfies n A (dn)™ # 0. A 1-form on
R?7+1 that satisfies this equation is called a contact form.
Locally we have the following

THEOREM 1.2 [Darboux] Let n be a 1-form on R***1 that
satisfies n A\ (dn)™ # 0. Then there is an open set U C R?*"t1

and local coordinates (z!,---,z™;yt,---,y™; 2) such that n
has the form (1.1) in U.

DEFINITION 1.3: A (2n + 1)-dimensional manifold M is a
contact manifold if there exists a 1-form n, called a con-
tact 1-form, on M such that

nA(dn)" #0

everywhere on M. A contact structure on M is an equiva-
lence class of such 1-forms, where n’ ~ n if there is a nowhere
vanishing function f on M such that n' = fn.
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LEMMA 1.4: On a contact manifold (M,n) there is a unique
vector field &, called the Reeb vector field, satisfying the two
conditions

En=1,  &ldn=0.

DEFINITION 1.5: An almost contact structure on a differen-
tiable manifolds M is a triple (¢, n,®), where ® is a tensor
field of type (1,1) (i.e. an endomorphism of TM), & is a
vector field, and n is a 1-form which satisfy

n¢)=1 and Pod=-T1+EQn,

where 1 is the identity endomorphism on TM. A smooth
manifold with such a structure is called an almost contact
manifold.

Let (M,n) be a contact manifold with a contact 1-form
n and consider D = ker n C T'M. The subbundle D is maxi-
mally non-integrable and it is called the contact distribu-
tion. The pair (D,w), where w is the restriction of dn to
D gives D the structure of a symplectic vector bundle. We
denote by J (D) the space of all almost complex structures
J on D that are compatible with w, that is the subspace
of smooth sections J of the endomorphism bundle End(D)
that satisty

(1.6) J* =1, dn(JX,JY)=dn(X,Y), dn(X,JX)>0

for any smooth sections X,Y of D. Notice that each J €
J (D) defines a Riemannian metric gp on D by setting

(1.7) gp(X,Y) = dn(X, JY).
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One easily checks that gp satisfies the compatibility condi-
tion gp(JX,JY) = gp(X,Y). Furthermore, the map J —
gp is one-to-one, and the space J(D) is contractible. A
choice of J gives M an almost CR structure.

Moreover, by extending J to all of TM one obtains an
almost contact structure. There are some choices of conven-
tions to make here. We define the section ® of End(7'M) by
® = J on D and &£ = 0, where & is the Reeb vector field
associated to n. We can also extend the transverse metric
gp to a metric g on all of M by

1.8 g(X,Y) = gp+n(X)@n(Y) = dn(X, @Y )+n(X)®n(Y)

for all vector fields X,Y on M. One easily sees that g sat-
isfies the compatibility condition g(®X,®Y) = ¢g(X,Y) —
n(X)n(Y).

DEFINITION 1.9: A contact manifold M with a contact form
n, a vector field &, a section ® of End(T'M), and a Rieman-

nian metric g which satisfy the conditions
77(5):17 (I)2:_]I+§®777

9(®X,®Y) = g(X,Y) — n(X)n(Y)
is known as a metric contact structure on M.

DEFINITION-PROPOSITION 1.10: A Riemannian manifold
(M, g) is called a Sasakian manifold if any one, hence all,
of the following equivalent conditions hold:

(i) There exists a Killing vector field £ of unit length on
M so that the tensor field ® of type (1,1), defined by
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®(X) = Vx¢, satisfies the condition
(Vx®)(Y) = g(§,Y)X —g(X,Y)¢

for any pair of vector fields X and Y on M.

(ii) There exists a Killing vector field £ of unit length on M
so that the Riemann curvature satisfies the condition

R(X,0)Y = g(§,Y)X —g(X,Y)§,

for any pair of vector fields X and 'Y on M.

(iii) The metric cone on M (C(M),g) = (Ry x M, dr*+r?g)
is Kahler.

We refer to the quadruple S = (g, 7, &, ) as a Sasakian
structure on M, where 1 is the 1-form dual vector field &.
It is easy to see that 7 is a contact form whose Reeb vector
field is €. In particular S = (g,7,&, ®) is a special type of
metric contact structure.

The vector field £ is nowhere vanishing, so there is a
1-dimensional foliation F, associated with every Sasakian
structure, called the characteristic foliation. We will denote
the space of leaves of this foliation by Z. Each leaf of F¢
has a holonomy group associated to it. The dimension of
the closure of the leaves is called the rank of S. We shall be
interested in the case rk(S) = 1.

DEFINITION 1.11: When rk(S) = 1 we say that Sasakian
structure S is quasi-regular. If F¢ defines a principal S*
bundle, we say that S is regular.
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When § is compact and quasi-regular then then Z has
a structure of a Riemannian orbifold (or a V-manifold). Z
is a smooth manifold in the regular case.

DEFINITION-PROPOSITION 1.12: A Sasakian space (M, g) is
Sasakian-Einstein if the metric g is also Einstein. For any
2n+1-dimensional Sasakian manifold Ric(X,€&) = 2nn(X)
implying that any Sasakian-FEinstein metric must have posi-
tive scalar curvature. Thus any complete Sasakian-FEinstein
manifold must have a finite fundamental group. Further-
more the metric cone on M (C(M),g) = (Ry x M, dr?+r?g)
is Kahler Ricc-flat (Calabi-Yau).

The following are the two fundamental structure theo-
rems for Sasakian and Sasakian-Einstein manifolds:

THEOREM 1.13: [Boyer,—| Let (M,g) be a compact quasi-
regular Sasakian manifold of dimension 2n+1, and let Z de-
note the space of leaves of the characteristic foliation. Then

(i) The leaf space Z is a Hodge orbifold with Kahler metric

h and Kahler form w which defines an integral class [w]
in H2 ,(Z,7) so that w: (M,g)—>(Z,h) is an orbifold
Riemannian submersion. The fibers of m are totally

geodesic submanifolds of M diffeomorphic to S*.
(ii) (M, g) is Sasakian-Einstein iff (Z,h) is Kahler-FEinstein
with scalar curvature 4n(n + 1).
THEOREM 1.14: [Boyer,—| Let (Z,h) be a Hodge orbifold.
Let m : M—Z be the S' V-bundle whose first Chern class is
(w], and let  be a connection 1-form in M whose curvature

is 2m*w, then M with the metric m*h 4+ n ® n is a Sasakian
orbifold. Furthermore, if all the local uniformizing groups
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inject into the group of the bundle S*, the total space M is
a smooth Sasakian manifold.

DEFINITION 1.15: A Sasakian manifold (M, g) is called a
positive if the transverse geometry Z is Fano.

Positivity, or the Fano condition just as in the smooth
case can be expressed in terms of orbifold Chern classes of
the Z (first Chern class ¢1(Z2)), or in terms of basic Chern
classes of the characteristic foliation F¢ (first Chern class

c1(Fe))-

THEOREM 1.16: [Boyer,—, Nakamaye| Any positive Sasakian
manifold (M, g) admits a Sasakian metric g' of positive Ricci
curvature.

The following is an orbifold version of the famous Koba-
yashi bundle construction of Einstein metrics on bundles
over positive Kahler-Einstein manifolds.

THEOREM 1.17: Let (Z, h) be a compact Fano orbifold with
m¢"%(Z) = 0 and Kihler-Einstein metric h. Let m : M—Z

be the S' V-bundle whose first Chern class is Ijillc(lé)?) Sup-

pose further that the local uniformizing groups of Z inject
into S'. Then with the metric ¢ = m*h+n®n, M is a

compact simply connected Sasakian-Finstein manifold.

A very special class of Sasakian-Einstein spaces is nat-
urally related to several quaternionic geometries.

DEFINITION 1.18: Let (M, g) be a Riemannian manifold of
dimension m. We say that (M, g) is 3-Sasakian if the metric

cone (C(M),g) = (Ry xS, dr?+r2g) on M is hyperkébhler.
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1.19

C(M): CONE M/F:: TRANSVERSE
GEOMETRY M GEOMETRY
SYMPLECTIC CONTACT SYMPLECTIC
KAHLER SASAKIAN KAHLER
) POSITIVE

KAHLER SASAKIAN FANO
CALABI-YAU SASAKIAN FANO

EINSTEIN KAHLER-EINSTEIN
HYPER- FANO, C-CONTACT
KAHELER 3-SASAKIAN KAHLER-EINSTEIN
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HYPERKAHLER

GEOMETRY
R, x M
TWISTOR | 3_SASAKIAN
Z ¢ M
GEOMETRY l GEOMETRY
O
QUATERNIONIC KAHLER
GEOMETRY

EXAMPLES OF S-E MANIFOLDS

EXAMPLE 1.20: 3-Sasakian Manifolds:

(a) “flat example”

H™ \ {0}
e ‘ N\
(CIP)2n—1 ¢ S4n—1
l
N\ v
IP)Hn—l
(b) homogeneous examples
C(G/L)
v N\
G/L-U(1) : l G/L
N\ v
G/L - Sp(1)



(c) toric examples [Boyer,—, Mann, Rees’98]

H™ \ {0}

e ‘ N\
(C]P)2n—1 ¢ S4n—1
!
e vd
]PaHn—l
Tk QUOTIENT
R_|_ X S(Q)
e e
Z(Q) ¢ l S(Q)
N\ e

o)

Here, () is an integral matrix which defines a homomorphism
fo : T*—U(n). In the case dim(S(Q))) = 7, there are
choices of 2 for any k£ > 1 which make S(€2) smooth. Since
b2(S(2)) = k we conclude that there exist Einstein mani-
folds with arbitrarily large second Betti number. These were

first such examples.

(d) first non-toric examples [Boyer,—, Piccinni’02] (in di-
mension 11,15) were obtained by non-Abelian reduction
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of the flat example, where instead of the torus G = T*
one takes G = Sp(1) x T*.

(e) more recently non-toric examples in dimension 7 were
obtained by Grove, Wilking, and Ziller. They use orb-
ifold bundle construction with the examples of orbifold
twistor space and self-dual Einstein metrics Z,— Oy
discovered by Nigel Hitchin in 1996. the self-dual Ein-
stein metric on Oy, is defined on $*\ RP? and it has Z
orbifold singularity along RP?. However, it turns out
that the bundle M;— Z; is actually smooth. In par-
ticular, one can compute integral cohomology ring of
M;.. For odd k the 3-Sasakian manifold M}, is a ratio-
nal homology 7-sphere with non-zero torsion depending
on k. Hence, there exist infinitely many rational homol-
ogy 7-spheres which have 3-Sasakian metrics.

EXAMPLE 1.21: Other Sasakian-FEinstein Manifolds:

(a) complex Hopf fibration:

C" \ 10}

(b) There are many homogeneous examples; all compact
homogeneous Kahler-Einstein spaces are classified and
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they are of the form Z = G/P. Hence, one can replace
the complex projective space with Z = G/P and apply
the usual Kobayashi construction.

(c) There are also many inhomogeneous examples. One
can take any smooth compact Fano variety Z which
admits a Kahler-Einstein metric. For example, in the
case of complex surfaces it is know exactly which Fano
(del Pezzo) surfaces admit a K-E metric. These were
already mentioned in the introduction.

Until recently, examples of smooth irregular Sasakian-
Einstein manifolds were rare (with the exception of inhomo-
geneous 3-Sasakian spaces mentioned above). On the other
there are plentiful examples of compact irregular Sasakian,
or even positive Sasakian manifolds. In these lectures we
will concentrate on one particular example.
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2. Links of isolated hypersurface singularities

[The basic reference on links is Milnor’s beautiful book: Sin-
gular Points of Complex Hypersurfaces.]

Consider the affine space C**! together with a weighted
C*-action given by (2q, ..., 2,) — (A%920,...,A""2z,), where
the weights w; are positive integers. It is convenient to view
the weights as the components of a vector w € (Z*+)"+!,
and we shall assume that ged(wo,...,w,) = 1. Let f be a
weighted homogeneous polynomial, that is f € Clzg, ..., 2]
and satisfies

FO®02z, . A 2) = A f (20, .., 2n),

where d € ZT is the degree of f. We shall assume that the
origin in C"*1! is an isolated singularity or to further simplify
matters that it is the only singularity.

We are interested in the link L defined by
2.1 Ly={f=0}nS*+

where

22 ST ={(20,...,20) €C"|D |z|* =1}
7=0

is the unit sphere in C"**. L; is endowed with a natural
quasi-regular Sasakian structure inherited as a Sasakian sub-
manifold of the sphere S?"t! with its “weighted” Sasakian
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structure (éw, Nw, Pw, gw) Which in the standard coordinates
{zj = zj +iy;}7_ on C*"*! = R***2 is determined by
2.3

C >io(@idy; — yiday)
T wilw? )

) §W — Zw%(xzayz — yzaﬂiz)a
1=0

and the standard Sasakian structure (£,n, ®,g) on S?7t1,

The quotient of S?"T! by the “weighted S!-action” gen-
erated by the vector field &, is the weighted projective space
P(w) = P(wo, - . .,w,), and we have a commutative diagram:

Ly —— Syt

2.4 ‘W l
Zy —— P(w),

where the horizontal arrows are Sasakian and Kahlerian em-
beddings, respectively, and the vertical arrows are orbifold

Riemannian submersions. Ly is the total space of the prin-
cipal S* V-bundle over the orbifold Z; whose first Chern

class is @ € H*(Z4,Q), and 7y is a connection in this

V-bundle whose curvature is dn.

PROPOSITION 2.5: The orbifold Z; is Fano if and only if
d — Zwi < 0.

Now, recall the well-known construction of Milnor for
isolated hypersurface singularities: There is a fibration of
(82"t — L ;+)— S whose fiber F is an open manifold that is
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homotopy equivalent to a bouquet of n-spheres §™V 5™ ---V
S™. The Milnor number p of Ly is the number of S™’s in
the bouquet. It is an invariant of the link which can be
calculated explicitly in terms of the degree d and weights
(wo, . .., wy) by the formula

2.6 p=p(Ly) Z_H(—.—l)-

The closure F of F has the same homotopy type as F' and is
a compact manifold with boundary precisely the link L¢. So
the reduced homology of F and F' is only non-zero in dimen-
sion n and H, (F,7Z) ~ 7. Using the Wang sequence of the
Milnor fibration together with Alexander-Poincare duality

gives the exact sequence
2.7

I—h,
0—H,(Ls,Z) — Hp(F,Z) — Hy(F,Z) — Hp_1(Ly,Z)—0

where h, is the monodromy map (or characteristic map) in-
duced by the S}, action. From this we see that H,,(Ls,Z) =
ker(I — h,) is a free Abelian group, and H,_1(L¢,Z) =
Coker(I — h,) which in general has torsion, but whose free
part equals ker(I — h,). So the topology of L; is encoded
in the monodromy map h,. There is a well-known algo-
rithm due to Milnor and Orlik for computing the free part
of H, 1(L¢,Z) in terms of the characteristic polynomial
A(t) = det(tl — h.), namely the Betti number b,(Ls) =
bn—1(Lys) equals the number of factors of (¢t — 1) in A(?).
First we mention an important immediate consequence of
the exact sequence (2.7) which is due to Milnor:
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PROPOSITION 2.8: The following hold:
(i) Ly is a rational homology sphere if and only if A(1) # 0.
(ii) Ly is a homology sphere if and only if |A(1)| = 1.

(iii) If Ly is a rational homology sphere, then the order of
H,_1(L¢,Z) equals |A(1)|.

EXAMPLE 2.9:
(a) w=(1,1,1,1), f=2z20+21+22+23, d=1.
Z; =CP(2), L;=S5°.
(b) w=(1,1,1,1), f=2i+27+25+235, d=2.
Z; = CP(1) x CP(1), Ly=5%x 8
(c) w=(1,1,1,1), f=2z3+2}+25+235, d=3.

Z; = CP(2)#6CP(2) ,  L;=6#(S*x S%).

(d) w=1(1,1,1,2), f=2z5+z2f+25+23, d=41.

Z; = CP(2)#7CP(2) ,  Lj;=T#(S*>x S%).

(e) w=(1,1,2,3), f=25+20+25+22 d=6.

oo

Z; = CP(2)#8CP(2) ,  Lj;=8#(S*x S%).
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f) w=(1,1,1,k), f = z§+1+zk+1+zk+l+zozg, d=k+1.

Ly = k#(S* x §%).
(g) W = (1’27375)7 f= Z() ‘|‘Z1 ‘1‘2’221 —|—Z3, d =10
Lf = 9#(52 X 53)
(h) w = (11,29,39,49), f = 2520+ 2120+25 + 2321, d = 127

Ly = 2#(8% x S%).

(i) w = (13,35,81,128), f = 24721 + 2722 + 2320 + 22,
d = 256

Lf = 52 X 53.
(j) w=(17,34,75,125,175), f = homework, d = 425

|H3(Lf7Z)| = 17"

(k) w = (127,2266, 3651, 6043,8435), f = homework, d =
20521

|Hs(L;,7)| = 20521.

(1) w = (127,2392,3399, 6043,8561), f = homework, d =
20521

\Hs(Ly,Z)| = 2052L.
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(m) w = (6,2(6k —1),3(6k — 1), 3(6k — 1), 3(6k — 1)),
F=2F1+ 23 + 22+ 22 + 22,
d = 6(6k — 1)

Zr~P(2,1,1,1), Ly~S".

But the smooth structure depends on k.

() w=(2,2p+1,2p+1,2p+1,2p+1,2p+ 1),
F=2""" 422+ 23 + 22 + 25 + 22,
d=22p+1)

Zy~P(1,1,1,1,1), Ly~ S7.

But the smooth structure depends on p.

In some of the above examples the homogeneous poly-
nomial f contains no “mixed” monomial terms of the form
2 zjﬂ Such an f is called of Brieskorn-Pham type (abbre-
viated BP type). In his famous work, in 1966 Brieskorn
considered links L(a) defined by

210 ) Z2|=1,  fa(z) =2+ 422 =0.
1=0

To the vector a = (ag, -+, a,) € Zf”ﬁl one associates a graph
G(a) whose n—+1 vertices are labeled by ag, - - - , a,,. Two ver-
tices a; and a; are connected if and only if ged(a;,a;) > 1.
Let C., denote the connected component of G(a) deter-
mined by the even integers. Note that all even vertices
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belong to C¢,, but C¢, may contain odd vertices as well.
Then we have the so-called Brieskorn Graph Theorem

THEOREM 2.11: The following hold:

(i) The link L(a) is a rational homology sphere if and only
if either G(a) contains at least one isolated point, or
Ce, has an odd number of vertices and for any distinct
i, Q5 € Cev, gcd(ai, CLj) = 2.

(ii) The link L(a) is an integral homology sphere if and only
if either G(a) contains at least two isolated points, or
G(a) contains one isolated point and C,, has an odd
number of vertices and for any distinct a;,a; € Cey,
gcd(ai, aj) = 2.

Recall that by seminal work of Milnor, Kervaire and
Milnor and Smale, for each n > 5, differentiable homotopy
spheres of dimension n form an Abelian group ©,,, where
the group operation is connected sum. ©,, has a subgroup
bP, 11 consisting of those homotopy n-spheres which bound
parallelizable manifolds V,, 1. Kervaire and Milnor proved
that bPs,, 41 = 0 for m > 1, bPyp420 = 0, or Zo and is Zsy if
4m + 2 # 2 — 2 for any ¢ > 3. The most interesting groups
are bPy,, for m > 2. These are cyclic of order

2.12  |bPyy| = 2°™2(2*™ ! — 1) numerator <4im )

where B, is the m-th Bernoulli number. Thus, for example
|bPg| = 28, [bPy2| = 992, |bPg| = 8128 and |bPyy| = 130, 816.
In the first two cases these include all exotic spheres. The
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correspondence is given by

1
2.13 KM :¥w— gT(V4m(Z))mOd|bP4m|,

where V,,,,(X) is any parallelizable manifold bounding 3 and
T is its signature. Let 3; denote the exotic sphere with
KM(%;) = i. Now, Brieskorn Graph theorem tells us for
which a the BP link L(a) is a homotopy sphere. By (2.13)
we need to be able to compute the signature to determine
the diffeomorphism types of various links. We restrict our
interest just to the case when m = 2k + 1.

In this case, the diffeomorphism type of a homotopy
sphere L(a) € bP,,,_» is determined by the signature 7(M)
of a parallelizable manifold M whose boundary is ¥2m~3.
By the Milnor Fibration Theorem we can take M to be the
Milnor fiber M2™~2 which, for links of isolated singularities
coming from weighted homogeneous polynomials is diffeo-
morphic to the hypersurface {z € C™ | fa(z0, ", 2m-1) =
1}.

Brieskorn shows that the signature of M2™~2 can be
written combinatorially as

2.14 (M) =

2k
#{xEZ%H | 0< z; <a; and 0 < Z% < 1mod2}
j=0 "
2k .
—#{x ez [0<z; <arand1< Y Z— < 2mod2},

3=0
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where m = 2k + 1.

Using a formula of Eisenstein, Zagier has rewritten this
formula as:

2.15 T(M2F) =

L N— . .
(2 2j + 1 2j + 1
Z J+)C0t7r(9+)__.cot7r(.7+)7
20,0 2a2k

§=0
where N is any common multiple of the a;’s. Both formulas
are quite well suited to computer use. We wrote a C code
which we call sig.c. For any m-tuple with m = 2k 4+ 1 =
5,7,9 sig.c computes the signature 7(a) := 7(M2*) and
the diffeomorphism type of the link using either of the above
formulas.

EXAMPLE 2.16: Let us consider the Breiskorn-Pham link
L(5,3,2,2,2). By Brieskorn Graph Theorem this is a ho-
motopy 7-sphere. One can easily compute the signature
using (2.14) to find out that 7(L(5,3,2,2,2)) = 8. Hence
L(5,3,2,2,2) = X7 is an exotic 7-sphere and it is called Mil-
nor generator (all others can be obtained from it by taking
connected sums). Similarly one does not need a computer
to find that the signature of any L(6k — 1,3,2,2,2) to see
that these so-called Brieskorn spheres realize all 28 diffeo-
morphism types of 7-spheres.

QUESTION 2.17: Suppose that Z; is Fano. Could one per-
haps prove existence of an Kahler-Finstein metric on Z;7
Every time this can successfully be done we automatically
get a Sasakian-FEinstein metric on the link L.
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3. Kahler-Einstein Metrics on Fano Orbifolds

Recall that on a Kahler manifold Ricci curvature 2-form
p, of any Kahler metric represents the cohomology class
2mweq (M). The well-known Calabi Conjecture is the question
whether or not the converse is also true. To be more specific
we begin with a couple of definitions

DEFINITION 3.1 Let (M, J, g,w,) be a compact Kahler man-
ifold. The Kahler cone of M

w] € Hl’l(M, C) ﬂH2(M,]R) | [w] = [wh]
for some Kaehler metric h

K(M) = {

is the set of all possible Kahler classes on M.

It is easy to show that K (M) is a convex open set in
HYY(M,C) N H2(M,R).
DEFINITION 3.2 Let (M, J, g,w,) be a compact Kahler man-

ifold and K(M) it Kahler cone. For any fixed Kahler class
[w] € K(M) we define

K = {h € T(®*(TM)) | h his Kaehler and [w] = [wy]}

to be the space of all Kahler metrics in a given cohomology
class.

Global :00-lemma provides for a very simple description
of the space of Kahler metrics Kp,. Suppose we have a
Kahler metric ¢ in a with Kahler class [w,] = [w] € K(M).
If h € K} is another Kahler metric then, up to a constant,
there exists a global function ¢ € C°°(M,R) such that
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wp — wy = 100¢. We could fix constant by requiring, for
example, that [, ¢wy = 0. Hence, we have

COROLLARY 3.3 Let (M, J, g,w,) be a compact Kahler man-
ifold with [w,] = [w] € K(M). Then, relative to the metric
g the space of all Kahler metric Ky, can be described as

K[w] — {¢ S COO(M7 R) | Wh = wg+z85q§ > 0, / ¢w3 — 0}7
M

where the 2-form w;, > 0 means that wy (X, JY) is a Hermi-
tian metric on M.

We have the following theorem

THEOREM 3.4 Let (M, J,g,w,) be a compact Kahler mani-
fold, (wy] = w € K(M) the corresponding Kahler class and
pg the Ricci form. Consider any (1,1)-form Q2 on M such
that [2] = 2mwc1(M). Then there exists a unique Kéahler
metric h € Ky, such that Q0 = p,.

The above statement is the celebrated Calabi Conjecture
which was posed by Eugene Calabi in 1954. The conjecture
in its full generality was eventually proved by Yau in 1976.
In the Fano case when ¢ (M) > 0, i.e., when the first Chern
class can be represented by a positive-definite real, closed
(1,1)-form p’ on M, the conjecture implies that the K&hler
form of M can be represented by a metric of positive Ricci
curvature.

Let us reformulate the problem using the global 00-
lemma. We start with a given Kahler metric ¢ on M in
Kahler class [wy] = [w]. Since p, also represents 2mci (M)
there exists a globally defined function f € C'°°(M,R) such
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that
py — Q= i00f.

Appropriately, f may be called a discrepancy potential func-
tion for the Calabi problem and we could fix the constant
by asking that [, (e/ —1)w, = 0.

Now, supposed the desired solution of the problem is a
metric h € K,;). We know that the Kahler form of & can be
written as

Wh = Wy + 285¢,

for some smooth function ¢ € C*°(M,R). We normalize ¢

as in previous corollary. Combining these two equations we
see that

Ph — Pg = 100 .

If we define a smooth function F' € C*°(M,R) relating the
volume forms of the two metrics wj; = e”w? then the left-
hand side of the above equation takes the following form

i00F = pp, — py = 100,

and, hence, simply i00(F — f) = 0. Hence, F' = f + c. But
since we normalized [,,(ef — 1)wy, = 0 we must have ¢ = 0.
Hence, I' = f, or w}y = el Wy - We can now give two more
equivalent formulations of the Calabi Problem.

THEOREM 3.5 Let (M, J,g,w,) be a compact Kdhler mani-
fold, [wy] = w € K(M) the corresponding Kéahler class and
pg the Ricci form. Consider any (1,1)-form on M such that
Q] = 2me1 (M). Let pg — Q = i00f, with [, (e/ — 1)w, = 0.
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(i) There exists a unique Kahler metric h € Ky, whose

volume form w? equals to e/ Wy -

(ii) Let (U, z1,...,2,) be a local complex chart on M with
respect to which the metric g = (g;;). Then, up to a
constant, there exists a unique smooth function ¢ in

K|.], which satisfies the following equation

82
det (9713 + 8zi8d,)2j )

_f
= e’.
det(gﬁ)

The equation in (ii) is called the Monge-Ampére equa-
tion. Part (i) gives a very simple geometric characterization
of the Calabi-Yau theorem. On a compact Kahler mani-
fold one can always find a metric with arbitrarily prescribed
volume form. The uniqueness part of this theorem was al-
ready proved by Calabi. This part involves only Maximum
Principle. The existence proof uses continuity methods and

it involves several difficult a priori estimates. These were
found by Yau in 1978. We have

COROLLARY 3.6 Let (M, J, g,w,) be a compact Kdhler man-
ifold with ¢1(M) = 0. Then M admits a unique Kahler
Ricci-flat metric.

It is “folklore” that Calabi-Yau Conjecture is also true
for compact orbifold. In the context of Sasakian geometry
and fundamental foliations the transverse space Z is typi-
cally a compact Kahler orbifold. In the context of foliations
a transverse Yau theorem was proved by El Kacimi-
Alaoui in 1990.
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Let (&,7n,®,g) be a Sasakian structure on M, and con-
sider the contact subbundle D = ker 7. There is an orthog-
onal splitting of the tangent bundle as

3.7 TM =D& L,

where L¢ is the trivial line bundle generated by the Reeb
vector field £&. The contact subbundle D is just the normal
bundle to the characteristic foliation F; generated by &. It is
naturally endowed with both a complex structure J = ®|D
and a symplectic structure dn. Hence, (D, J,dn) gives M a
transverse Kahler structure with Kahler form dn and metric
gp defined by

3.8 go(X,Y) = dn(X, JY)
which is related to the Sasakian metric g by

g=9gpONXN.
Recall that a smooth p-form o on M is called basic if
3.9 £la=0, Lea =0,

and we let A%, denote the sheaf of germs of basic p-forms on
M, and by € the set of global sections of A% on M. The
sheaf A%, is a module under the ring, A%, of germs of smooth
basic functions on M. We let C¥ (M) = QY% denote global
sections of A%, i.e. the ring of smooth basic functions on M.
Since exterior differentiation preserves basic forms we get a
de Rham complex

d
3.10 0P —— QP
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whose cohomology HF;(F¢) is called the basic cohomology of
(M, F¢). The basic cohomology ring Hj;(F¢) is an invari-
ant of the foliation F¢ and hence, of the Sasakian structure
on M. It is related to the ordinary de Rham cohomology
H*(M,R) by the long exact sequence

3.11 ;

] o)
— HY(Fe)—HP(M,R) — HY ' (Fe) — HY T (Fe) —

where ¢ is the connecting homomorphism given by d[a|g =
l[dnAa]p = [dn]BU[a] B, and j, is the composition of the map
induced by & | with the well known isomorphism H" (M, R) ~
H"(M,R)S" where H"(M,R)S" is the S'-invariant cohomol-
ogy defined from the S'-invariant r-forms Q7 (M)S . Here
we denote cohomology classes in Hp(F¢) by [-]p in order to
distinguish them from the ordinary cohomology classes. We
also note that dn is basic even though 7 is not.

Next we exploit the fact that the transverse geometry
is Kahler. Let D¢ denote the complexification of D, and
decompose it into its eigenspaces with respect to J, that
is, Dc = D0 @ DY!. Similarly, we get a splitting of the
complexification of the sheaf AL of basic one forms on M,
namely

AbeC=A3"®AY.

We let AZ? denote the sheaf of germs of basic forms of type
(p,q), and as in the usual case there is a splitting

3.12 z®C= P Ay,



as well as the basic Dolbeault complex

5 5
313 0— AR — AR — ... AR,

together with basic Dolbeault cohomology groups HZ?(Fe).
Most of the usual results about Kahler geometry carry over
to transverse Kahler geometry.

Now the contact subbundle D is a complex vector bun-
dle and thus has a first Chern class ¢ (D) € H?(M, Z). Con-
sider the long exact sequence (3.11) together with the natu-
ral map H?(M,7Z)— H?*(M,R) whose kernel is the torsion
part of H?(M,Z). We have

H2(M,Z)

3.14 l

) L
0—R— HE(Fe) — H?*(M,R)— - - -

As in (3.11) the map ¢ is given by d(c) = c[dn] where ¢ € R.
Now on a Sasakian manifold the vector bundle D*° is holo-
morphic with respect to the CR-structure, so we can com-
pute the free part of c¢;(D) = c; (DY) from the transverse
Kéahler geometry in the usual way. That is ¢;(D) can be
represented by a basic real closed (1,1)-form pg. The class
cP = [pp] € H4(F¢) is independent of the transverse metric
and basic connection used to compute it, and depends only
on the foliated manifold (M, F;) with its CR-structure. It
is described by El Kacimi-Alaoui and called the basic first
Chern class of D there. Alternatively, we can think of cP
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as the negative of the first Chern class of the “transverse
canonical bundle” K = (A5")" of M.

THEOREM 3.15: [ El Kacimi-Alaoui] If ¢? is represented by
a real basic (1,1) form p*, then it is the Ricci curvature
form of a unique transverse Kahler form w! in the same
basic cohomology class as dn.

In the language of positive Sasakian manifolds this the-
orem can be used to show

THEOREM 3.16: [Boyer,—,Nakamaye| Any positive Sasakian
manifold admits a metric of positive Ricci curvature.

One of the consequences of the Yau’s theorem is that
a compact Kahler manifold with ¢;(M) = 0 must admit
a Ricci-flat, hence, Einstein metric. More generally, we
can consider existence of Kahler-Einstein metrics with ar-
bitrary Einstein constant A. By scaling we can assume that
A = 0,+1. Specifically, let (M, J, g,w,) be a compact Kaher
manifold. We would like to know if one can always find a
Kahler-Einstein metric h € K, ). Recall that on a Kahler-
Einstein manifold p, = Aw,. This implies that 2mc (M) =
Awg]. Now, if ¢;(M) > 0 we must have A = +1 because
lwg] is the Kahler class. Similarly, when ¢; (M) < 0 the only
allowable sign of a Kahler-Einstein metric on M is A = —1.
Clearly, when ¢;(M) = 0 we must have A = 0 as [w,] # 0.
As we have already pointed out the A\ = 0 case follows from
Yau'’s solution to the Calabi conjecture. For the reminder of
this lecture we shall assume that A = £1.

Let (M, J,g,w,) be a Kidhler manifold and [w,] = [w] €
K (M) the Kéhler class. Let us reformulate the existence
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problem using the global i90-lemma. Suppose there ex-
ists an Einstein metric h € Ky;. Starting with the original

Kahler metric g on M we have a globally defined function
f € C®°(M,R) such that

pg — Aw, = i00f.

As before we will call f a discrepancy potential function. We
also fix the constant by asking that [, (e/ — 1)w, = 0. Let
h € K}, be an Einstein metric for which p;, = Awp. Us-
ing global :00-lemma once again we have a globally defined
function ¢ € C°°(M,R) such that wy, —w, = i00¢. We shall
fix the constant in ¢ later. Using these two equations we
easily get
pg — pn = 100(f — A@).

Defining F' so that w} = e” w, we can write this equation as

i00F = i00(f — \o).

This implies that F' = f — A¢ + c. We have already fixed the
constant in f so ¢ depends only on the choice of ¢. We can
make ¢ = 0 by choosing ¢ such that [,,(e/~** — 1)w? = 0.
Hence, we have the following

PROPOSITION 3.17 Let (M, J) be a compact Kahler man-
ifold with Acy(M) > 0, where A = +1. Let [w] € K(M)
be a Kahler class and g,h two Kahler metrics in K, with
Ricci forms pg,pn. Let f,¢ € C°(M,R) be defined by
pg — M\w, = i00f, wp — w, = i00¢$. Fix the relative con-
stant of f — A\¢ by setting [, (e/=*? — 1)w, = 0. Then the
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metric h is FEinstein with Finstein constant A\ if and only if
¢ satisfies the following Monge-Ampére equation

wp = el =2

g Y
in a local complex chart (U, z1, ..., z,) written as
2
det( -4 8_@)
g’LJ 6Zz'azj _ ef_)\QS.
det(gs;)

Note that by setting A = 0 we get the Monge-Ampére
equation for the original Calabi problem. The character of
the Monge-Ampére equation above very much depends on
the choice of A\. The case of A = —1 is actually the sim-
plest as the necessary a priori C%-estimates can be derived
using the Maximum Principle. This was done by Aubin and
independently by Yau. We have

THEOREM 3.18 Let (M, J, g,w,) be a compact Kahler man-
ifold with c1(M) < 0. Then there exists a unique Kahler
metric h € Ky,,,] such that pp, = —wp,.

When k = +1 the problem is much harder. It has been
known for quite some time that there are actually non-trivial
obstructions to the existence. Let h(M) be the complex Lie
algebra of all holomorphic vector fields on M. Matsushima

proved that one a compact Kahler-Einstein manifold with
c1(M) > 0 (M) must be reductive, i.e., (M) = Z(h(M) &
[6(M), h(M)].

Here one tries to solve the Monge-Ampére equation
det(gig + 87,55@) o 6_t¢t+f
det(gii) 7

9i5 + 0i0;¢4 > 0
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for t € [0,1]. Yau’s Theorem tells us that this has a solution
for ¢t = 0, and we try to solve this for ¢ = 1, where the metric
will be Kahler-Einstein The so called “continuity method”
sets out to show that the interval where solutions exist is
both open and closed. Openness follows from the Implicit
Function Theorem, but there are well known obstructions
to closedness. This problem has been studied by many peo-
ple; Yau, Tian, Siu, Nadel, and most recently by Demailly
and Kollar who work in the orbifold category. Closedness is
equivalent to the uniform boundedness of the integrals

/ e—7t¢tw61
Z
n

for any v € (;;44,1), where wp is the Kéhler form of hg.
This means that the multiplier ideal sheaf J(v¢) = Oz for

all v € (45, 1)-
Here is an example of the estimates used to obtained
many (but not all) theorems mentioned in the introduction

THEOREM 3.19 [Boyer,—,Kollar| Let Z(a) be the transverse
space of the BP link L(a). Let C; = lecm(aq,...,ai,...,ay),
b; = ged(Cy,a;). Then Z(a) is Fano and it has a Kahler-
Einstein metric if

(i) 1<Zﬁ1a%
(i) > .- 1a <1+ 2= min;{—- -}, and

(iii) Z,L 1a <1+ 2= 1mlnw{bb}

In this case the link L(a) admits a Sasakian-Einstein
metric with one-dimensional isometry group.
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