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LECTURE 1

Canonical metrics in contact geometry
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• Contact and Sasakian Manifolds

Definition 1.1: A (2n + 1)-dimensional manifold M

is a contact manifold if there exists a 1-form η,

called a contact 1-form, on M such that

η ∧ (dη)n 6= 0

everywhere on M . A contact structure on M is

an equivalence class of such 1-forms, where η ′ ∼ η if

there is a nowhere vanishing function f on M such

that η′ = fη.

Lemma 1.2: On a contact manifold (M, η) there is a

unique vector field ξ, called the Reeb vector field,

satisfying the two conditions

ξcη = 1, ξcdη = 0.

Lemma 1.3: Let (M, η) be a contact manifold. The

cone (C(M), ω) := (M ×R+, d(r2η)) is symplectic.

Definition 1.4: One-dimensional foliation Fξ de-

fined by the Reeb field ξ is called the characteristic

foliation. The characteristic foliation Fξ is said to

be quasi-regular if there is a positive integer k such

that each point has a foliated coordinate chart (U, x)
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so that each leaf of Fξ passes through U at most k

times. If k = 1 then the foliation is called regular.

Finally, we say that Fξ is irregular if it is not quasi-

regular.

In the regular case we have the following famous theorem

of Boothby and Wang [1958]:

Theorem 1.5: Let (M, η) be a regular compact con-

tact manifold. Then M is a total space of a princi-

pal circle bundle π : M−→Z over the space of leaves

Z := M/Fξ. Furthermore, Z is a compact symplectic

manifold with symplectic form Ω, [Ω] ∈ H2(Z, Z), and

η is a connection form on the bundle with curvature

dη = π∗Ω.

(1.1)

(C(M), ω) ←↩ (M, η)yπ

(Z, Ω)
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Remark 1.6: When (M, η) is not regular but quasi-

regular the Boothby-Wang fibration theorem requires only

minor modification: in generalZ is not a smooth man-

ifold but it is a compact symplectic orbifold and

M is not a principle circle bundle but an orbibundle

(or a V-bundle).

Question 1.7: Consider the orbibundle (quasi-regular)

version of the diagram (1.1). What are the most

natural Riemannian metrics adapted to such

geometric structure?

It is believed and accepted that the most natural and in-

teresting Riemannian metrics adapted to a symplectic or

an almost complex structure are the Kähler metrics.

Hence, one would like to introduce some metric structure

on (1.1) such that π is an orbifold Riemannian submer-

sion on a Kähler base. In particular, the Reeb vector

field ξ must be a Killing field. But this is not sufficient.

It turns out that the “right answer” to this question leads

to Sasakian Geometry introduced by Sasaki [1960] un-

der a cumbersome name of normal contact metric

structure. We begin with one of the “older” definition

of the Sasakian structure.
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Definition 1.8: A Riemannian manifold (M, g) is

called a Sasakian manifold if there exists a Killing

vector field ξ of unit length on M so that the ten-

sor field Φ of type (1, 1), defined by Φ(X) := ∇Xξ,

satisfies the condition

(∇XΦ)(Y ) = g(ξ, Y )X − g(X, Y )ξ

for any pair of vector fields X and Y on M . We

refer to the quadruple S = (g, η, ξ, Φ) as a Sasakian

structure on M , where η is the 1-form dual vector

field ξ.

It is easy to see that η is a contact form whose Reeb vector

field is ξ. In particular, S = (g, η, ξ, Φ) is a special type

of metric contact structure.

It is far from obvious why Sasakian metrics should be

considered as natural candidates. At first glance, the cur-

vature restriction which is part of the definition appears

rather artificial. That is until one realizes that it is this

condition that makes both the cone C(M) and

the transverse space Z of the fundamental fo-

liation Kählerian.
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• Structure Theorems

Theorem 1.9 Let (M, g, η, ξ, Φ) be a compact quasi-

regular Sasakian manifold of dimension 2n + 1, and

let Z denote the space of leaves of the characteristic

foliation. Then Z is a Hodge orbifold with Kähler

metric h and Kähler form Ω which defines an integral

class [Ω] ∈ H2
orb(Z, Z) so that π : (M, g)−→(Z, h) is an

orbifold Riemannian submersion. The fibers of π are

totally geodesic submanifolds of M diffeomorphic to

S1.

(C(M), ω, ḡ) ←↩ (M, g, ξ, η, Φ)yπ

(Z, Ω, h, J)

Theorem 1.10 Let (Z, h) be a Hodge orbifold with

Kähler metric h and Kähler form Ω. Let π : M−→Z

be the S1 V-bundle whose first Chern class is [Ω], and

let η be a connection 1-form in M whose curvature

is 2π∗Ω. Then M with the metric π∗h + η ⊗ η is a

Sasakian orbifold. Furthermore, if all the local uni-

formizing groups inject into the group of the bundle

S1, the total space M is a smooth manifold.
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Proposition 1.11: Let (M, ξ, η, Φ, g) be a Sasakian

manifold. Then the metric cone on M defined by

(C(M), ḡ) := (R+ ×M, dr2 + r2g) is Kähler.

Remark 1.12: Since Erich Kähler’s seminal 1933

article

“...several dominant figures of the mathematical scene

of the XXth century have, step after step along a 50

year period, transformed the subject into a major area

of Mathematics that has influenced the evolution of

the discipline much further than could have conceiv-

ably been anticipated by anyone...”

writes J.-P. Bourguignon in his tributary article

The Unabated Vitality of Kählerian Geometry. Truly

impressive names of “dominant figures” follow. Sasakian

Geometry has not been as lucky. There always has been

interesting work in the area but for unclear reasons it

has never attracted people with the same broad vision,

people who would set out to formulate and then work

on fundamental problems. Yet, arguably in view of the

above theorems, Sasakian manifolds are at least as in-

teresting as Kähler ones. Perhaps more interesting as,

while being smooth, they naturally include intricate ge-

ometry of compact Kähler orbifolds with cyclic quotient

singularities.
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• Orbifold Chern Classes

Let (Z, h, J, ωh) be a Kähler manifold. In a local complex

chart the metric h is simply a Hermitian matrix hij̄. It

was Kähler who discovered that locally the Ricci tensor

of a Kähler metric can be written as

Rij̄ = −
∂

∂zi

∂

∂z̄j
ln(det(hij̄)).

Only much later first Chern and then Calabi realized

the importance of this remarkable formula. If one defines

the associated 2-form

ρω = −
i

2
Rij̄dzi ∧ dz̄j

which is called the Ricci form one realizes that the co-

homology class of ρω does not depend on the choice

of the Kähler metric within Kähler class. In fact, it

is easy to see that Ricci form represents the cohomology

class 2πc1(Z).

Properly told, in a modern language, a story of Sasakian

manifolds should start exactly here, with the first Chern

class. In order to account for some important subtleties

related to orbifold singularities some care needs to

be exercised. There are three different but equivalent ap-

proaches.
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[Basic Cohomology] First, one can use the foliation

language and the notion of basic cohomology to define

the so-called basic Chern classes ck(Fξ) of the fundamen-

tal foliation Fξ, in particular the basic first Chern class

c1(Fξ) ∈ H2
B(Fξ). This approach is perhaps the most ge-

ometric and the objects that define transverse invariants

are basic forms on M .

[Haefliger’s Orbifold Cohomology] Since Z as a

compact complex orbifold one can use the orbifold co-

homology groups H∗orb(Z, Z) of Haefliger [1984] and

define corb
1 (Z) as an element of H2

orb(Z, Z).

[Algebraic Geometry] In algebraic geometry one of

the fundamental objects is the canonical line bundle

KZ , and its dual the anti-canonical bundle K−1
Z . Co-

homology class corresponding to KZ , called the canon-

ical class is often denoted also by KZ and it is the nega-

tive of the first Chern class c1(Z) := c1(K
−1
Z ). One could

try to extend such definitions to the category of com-

plex orbifolds. However, in general a complex orbifold

is not the same as a complex algebraic variety with

quotient singularities. In fact, very interesting com-

plex orbifolds are smooth from the algebraic point of

view. We explain with the standard example.
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Example 1.13 [Weighted Projective Spaces] Let

w = (w0, . . . , wn) ∈ Zn
+ with gcd(w0, . . . , wn) = 1 and

(z0, . . . , zn) ∈ Cn+1. We define the C∗w-action on Cn+1:

λ · (z0, . . . , zn) := (λw0z0, . . . , λ
wnzn),

and extend this action to C[z0, . . . , zn]

λ · f(z0, . . . , zn) := f(λw0z0, . . . , λ
wnzn).

Pn
C(w) ≡ Pn

C(w0, . . . , wn) := (Cn+1 \ {0})/C∗w,

is called the weighted projective space. The eigen-

space of the C∗w-action on C[z0, . . . , zn] with eigenvalue

λd is

H0(Pn
C(w0, . . . , wn),O(d)),

the space of weighted homogeneous polynomials

of weight w and degree d.

Consider a triple of pairwise relatively prime positive

integers (a, b, c). Its is easy to see that

P2
C(ab, bc, ca) ' P2

C(a, c, ca) ' P2
C(a, 1, a) ' P2

C(1, 1, 1),

where “ ' ” indicates equivalence of algebraic varieties

but not orbifold equivalence. Although all equivalent to

the smooth complex projective plane these orbifolds (7 of

them) are all different and they do have different orbifold

first Chern class. On the other hand they are all Fano.
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The next example is more interesting. Consider

f(z0, z1, z2) = zc
0 + za

1 + zb
2 ∈ H0(P2

C(ab, bc, ca),O(abc)).

f = 0 defines a weighted homogeneous hypersur-

face in X ⊂ P2
C(ab, bc, ca). One can see that regardless

the choice of (a, b, c) we have X(a, b, c) ' P1
C. However,

as we shall see later, as orbifolds, X(a, b, c) are very

different depending on the sign of

1

a
+

1

b
+

1

c
− 1.

In particular, X(a, b, c) is Fano, only when this sign is

positive.

Both of the above examples are special because the

orbifold structure consists of codimension 1 singularities.

The space P2
C(ab, bc, ca) not well-formed. In order to

study and understand such complex orbifolds we codify

the data coming from the codimension 1 singularities by a

single Q-divisor, called the branch divisor of the orbifold,

∆ :=
∑

(1 − 1
mj

)Dj. Then we can think of a complex

orbifold Z as a pair (Z, ∆). With this in mind we define

the orbifold first Chern class as corb
1 (Z) ∈ H2(Z, Q)

corb
1 (Z) ≡ corb

1 (Z, ∆) = c1(Z)−
∑(

1−
1

mj

)
c1([Di]).

The orbifold canonical class Korb
Z = −corb

1 (Z) is the neg-

ative of the orbifold first Chern class.
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Definition 1.14 Let M be a compact quasi-regular

Sasakian manifold with the transverse space Z. We

say that M is positive (negative) Sasakian when

corb
1 (Z) > 0 (corb

1 (Z) < 0). In the case corb
1 (Z) is trivial

we say that M is null Sasakian.

Definition-Proposition 1.15: A Sasakian mani-

fold (M, g, η, ξ, Φ) is Sasakian-Einstein(SE) if the

metric g is also Einstein. For any 2n+1-dimensional

Sasakian manifold Ric(X, ξ) = 2nη(X) implying that

any SE metric must have positive scalar curvature.

Thus any complete SE manifold must have a finite

fundamental group. Furthermore, the metric cone on

M (C(M), ḡ) = (R+ ×M, dr2 + r2g) is Kähler Ricci-

flat (Calabi-Yau=CY).

Definition 1.16: Let (M, g) be a Riemannian mani-

fold of dimension m. We say that (M, g) is 3-Sasakian

if the metric cone (C(M), ḡ) = (R+ ×M, dr2 + r2g)

on M is hyperkähler.

With these definition the following table lists some ob-

vious interesting special families of Sasakian manifolds.

We now explain why some of these families are interesting

to a Riemannian geometer in search of special metrics.
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Cone Geometry of C(M) M Transverse Geometry of Fξ

Symplectic Contact Symplectic

Kähler Sasakian Kähler

Kähler positive Sasakian Fano, corb
1

(Z) > 0

Kähler null Sasakian Calabi-Yau, corb
1

(Z) = 0

Kähler negative Sasakian canonical, corb
1

(Z) < 0

Calabi-Yau Sasakian-Einstein Fano, Kähler-Einstein

Hyperkähler 3-Sasakian C-contact, Fano, Kähler-Einstein

• [Positive Sasakian Geometry] My own interest

in Sasakian geometry started over a decade ago with the

very last row of the table. That is because 3-Sasakian

spaces are automatically Einstein and they are in-

timately related to quaternion Kähler and twistor

geometries. However, 3-Sasakian manifolds are a very

special case of positive Sasakian and SE manifolds. Posi-

tive Sasakian manifolds provide a foundation for studying

and constructing SE metrics and positive Ricci curvature

Sasakian metrics in any dimension. The main idea can

be captured in the following

Theorem 1.17 Let (M, g) be a Sasakian manifold

such that (Z, h) is Fano. Then Z admits an orbifold

Kähler metric h′ of positive Ricci curvature which can

be lifted to a positive Ricci curvature Sasakian metric

g′ on M . If Z admits an orbifold Kähler-Einstein

(KE) metric in the same Kähler class then this metric

defines a unique SE metric on M .
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The first statement of the above theorem follows from an

orbifold version of the famous Yau’s Theorem [1978].

The second part is an orbibundle version of the old re-

sult of Kobayashi [Kob63] adapted to the Sasakian

situation.

• [Null and Negative Sasakian Geometry] SE

manifolds are necessarily of positive scalar curvature. How-

ever, there is an important class of special Sasakian met-

rics called η-Einstein (SηE) for which

Ric(X, Y ) = λg(X, Y ) + νη(X)η(Y ).

Here (λ, ν) are constants and λ + ν = 2n = dim(M) −

1. The importance of (SηE) metrics follows from the

following

Theorem 1.18 Let (M, g, η, ξ, Φ) be a compact quasi-

regular SηE manifold of dimension 2n + 1, and let Z

denote the space of leaves of the characteristic folia-

tion. Then Z is a Hodge orbifold with KE metric h

with Einstein constant λ + 2.

Now, in complete analogy with the Kähler case we

have three possibilities, depending on the sign of the KE

metric on the base:

17



λ > −2; M is positive Sasakian and the metric can be

easily deformed to an SE metric by the so-called trans-

verse homothety transformation. Hence, the exis-

tence (non-existence) of such metrics is completely equiv-

alent to the existence (non-existence) of an orbifold KE

metric on Z .

λ = −2; M is null Sasakian and the existence of SηE

metric rests assured on the orbifold version of the Cal-

abi Conjecture. This was proved for foliations by El

Kacimi-Alaoui [1978]. Such metrics are never Ein-

stein but null Sasakian geometry is intimately linked

to the geometry of the CY orbifolds.

λ < −2; M is negative Sasakian and the existence of SηE

metric rests assured on the orbifold version of the theorem

proved independently by Aubin and Yau which states

that any compact Kähler manifold Z with c1(Z) < 0

admits a unique KE with Ric = −g. While SηE metric

in the negative case is never Einstein, one can use it to

obtain a Lorentzian metric on the same space which

is SE.
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• Existence and Obstructions

In the case c1(Z) > 0 the existence of an orbifold KE

metric can be obstructed. This is true even for smooth

manifolds where several obstructions are known:

• Matsushima’s obstruction: the complex Lie al-

gebra h(Z) of holomorphic vector fields on Z must

be reductive [Matsushima 1957], i.e., h(Z) =

h(Z))⊕ [h(Z), h(Z)].

• Futaki character: Futaki [1983] introduced a

functional on the Lie algebra of holomorphic vector

fields h(Z). On a KE manifold this functional must

vanish.

• generalized Futaki invariants: In 1994 Ding

and Tian introduced a generalization of Futaki in-

variant. Remarkably, using this new invariant, they

showed that there are log del Pezzo surfaces with no

holomorphic vector fields which do not admit KE

metrics. Later, Tian showed that, in fact, there

are smooth Fano 3-folds with no holomorphic vec-

tor fields which admit no KE metric. This disproved

a “folklore” conjecture of Calabi.

• Generalized Futaki invariants and stability

Tian [1997]

19



• Existence results via continuity method: Con-

tinuity method was proposed by Calabi as an ap-

proach to the original Calabi conjecture. It has been

used successfully by Yau to prove the conjecture and

later by several people to establish existence of KE

metrics on Fano manifolds and orbifolds.

More generally, we can list the following obstructions to

various Sasakian structures:

• Sasakian manifolds are orientable

• Sasakian manifolds are contact

• compact irregular Sasakian manifolds exist but any

irregular Sasakian structure can be approximated by

a sequence of quasi-regular structures [Rukimbira,

1994]. As a consequence, a compact contact

manifold which does not admit a quasi-

regular contact structure cannot carry a

Sasakian structure

• on a compact Sasakian manifold odd Betti numbers

(up to the middle dimension) are even

• any compact simply-connected SηE manifold is spin

(SE in particular)
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• any compact positive Sasakian manifold has finite

fundamental group (SE in particular)

• any compact 3-Sasakian manifold has vanishing odd

Betti numbers (up to the middle dimension) [Galicki-

Salamon, 1996]

•Classification of Sasakian 3-Manifolds

Three dimensional Sasakian geometry is well under-

stood, culminating in the recent uniformization theorem

due to [Belgun 2000]. Geiges [Geiges 1997] showed

that a compact 3-manifold admits a Sasakian structure

if and only if it is diffeomorphic to one of the following:

1. S3/Γ with Γ ⊂ I0(S
3) = SO(4).

2. S̃L(2, R)/Γ, where is universal cover of SL(2, R) and

Γ ⊂ I0(S̃L(2, R)).

3. Nil3/Γ with Γ ⊂ I0(Nil3).

Here Γ is a discrete subgroup of the connected component

I0 of the corresponding isometry group with respect to

a ‘natural metric’, and Nil3 denotes the 3 by 3 nilpo-

tent real matrices, otherwise known as the Heisenberg

group. These are three of the eight model geometries

of Thurston, and correspond precisely to the compact

Seifert bundles with non-zero Euler characteristic.
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• Examples of SE Manifold

Example 1.19: [3-Sasakian Manifolds] Naively, one

would expect that such spaces may be hard to find be-

cause of all the geometric structure they must have. But

it turns out that it is precisely this extra structure that

allows for some explicit constructions of families of 3-

Sasakian manifolds.

• “flat example”

Hn \ {0}

↙ ↘

CP2n−1 ←−−−−
y S4n−1

↘ ↙

PHn−1

• homogeneous examples

C(G/L)

↙ ↘

G/L · U(1) ←−−−−
y G/L

↘ ↙

G/L · Sp(1)
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• toric examples [Boyer,Galicki, Mann, Rees’98]

Hn \ {0}

↙ ↘

CP2n−1 ←−−−−
y S4n−1

↘ ↙

PHn−1

T k

yQUOTIENT

R+ × S(Ω)

↙ ↘

Z(Ω) ←−−−−
y S(Ω)

↘ ↙

O(Ω)

Here, Ω is an integral matrix which defines a homo-

morphism fΩ : T k−→U(n). In the special case when

dim(S(Ω)) = 7, there are choices of Ω for any k ≥ 1

which make S(Ω) smooth. Since b2(S(Ω)) = k we

conclude that there exist Einstein manifolds with ar-

bitrarily large second Betti number. These

were first such examples.
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• first non-toric examples [Boyer,Galicki, Pic-

cinni’02] (in dimension 11,15) were obtained by

non-Abelian reduction of the flat example, where in-

stead of the torus G = T k one takes G = Sp(1)×T k.

• more recently non-toric examples in dimension 7 were

obtained by Grove, Wilking, and Ziller. They

use orbifold bundle construction with the examples of

orbifold twistor space and self-dual Einstein metrics

Zk−→Ok discovered by Nigel Hitchin in 1996.

The self-dual Einstein metric on Ok is defined on

S4 \ RP2 and it has Zk orbifold singularity along

RP2. However, it turns out that the bundle Mk−→Zk

is actually smooth. In particular, one can compute

integral cohomology ring of Mk. For odd k the 3-

Sasakian manifold Mk is a rational homology 7-sphere

with non-zero torsion depending on k. Hence, there

exist infinitely many rational homology 7-spheres which

have 3-Sasakian metrics.

Remark 1.20: A recent result of Dearricott [2004]

links metrics of positive sectional curvature to 3-

Sasakian geometry. Dearricott proves that when the

quaternionic Kähler orbifold base is of positive sectional

curvature then the 3-Sasakian metric can be deformed to
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a positive sectional curvature metric. Non-trivial exam-

ples exist only in dimension 7. In principle, a 3-Sasakian

structure on some exotic 7-sphere could lead to a con-

struction of positive sectional curvature metric

on a non-standard 7-sphere.

Example 1.21: Other Regular Sasakian-Einstein Man-

ifolds:

• complex Hopf fibration:

Cn \ {0}

↘y S2n−1

↙

PCn−1

• There are many homogeneous examples; all com-

pact homogeneous Kähler-Einstein spaces are classi-

fied and they are of the form Z = G/P . Hence,

one can replace the complex projective space with

Z = G/P and apply the usual Kobayashi construc-

tion.

• There are also many inhomogeneous examples.

One can take any smooth compact Fano variety Z

which admits a Kähler-Einstein metric. For example,

in the case of complex surfaces it is know exactly
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which Fano (del Pezzo) surfaces admit KE metric.

The complete classification was established by Tian

[1989].

Until 2001, examples of smooth irregular Sasakian-

Einstein manifolds were rare (with the exception of inho-

mogeneous 3-Sasakian spaces mentioned above). In the

second lecture we will describe a constructions of special

Sasakian metric on Brieskorn manifolds.
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LECTURE 2

Einstein Metrics on Brieskorn Manifolds
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•Sasakian Geometry of Links

Let w = (w0, . . . , wn) ∈ Zn
+ with gcd(w0, . . . , wn) =

1, (z0, . . . , zn) ∈ Cn+1 and C∗w be the corresponding

“weighted action” on Cn+1. In Example 1.13 we de-

fined the corresponding weighted projective space Pn
C(w)

and the space H0(Pn
C(w0, . . . , wn),O(d)), of weighted ho-

mogeneous polynomials of weight w and degree d.

Definition 2.1 Let f(z) ∈ H0(Pn
C(w0, . . . , wn),O(d)).

We define the following three spaces

Yf := {z ∈ Cn+1 | f(z) = 0} ⊂ Cn+1.

Zf := (Yf \ {0})/C∗w ⊂ Pn
C(w).

Lf := Yf ∩ S2n+1 ⊂ S2n+1(1) ⊂ Cn+1.

The space Zf is called weighted homogeneous

hypersurface, Yf is the affaine cone of Zf and Lf

is called the link.

We are interested in the case {0} ∈ Cn+1 is the only

singularity of f(z). In such case Zf is called quasi-

smooth and Lf is then a link of isolated hyper-

surface singularity.

The link Lf is endowed with a natural quasi-regular

Sasakian structure inherited as a Sasakian submanifold

of the sphere S2n+1 with its “weighted” Sasakian struc-

ture (ξw, ηw, Φw, gw) which in the standard coordinates
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{zj = xj + iyj}
n
j=0 on Cn+1 = R2n+2 is determined by

2.1

ηw =

∑n
i=0(xidyi − yidxi)∑n

i=0 wi(x2
i + y2

i )
, ξw =

n∑

i=0

wi(xi∂yi
− yi∂xi

),

and the standard Sasakian structure (ξ, η, Φ, g) on S2n+1.

The quotient of S2n+1 by the “weighted S1-action”

generated by the vector field ξw is the weighted projective

space Pn
C(w) and we have a commutative diagram:

2.2

Lf −−→ S2n+1
wyπ
y

Zf −−→ P(w),

where the horizontal arrows are Sasakian and Kählerian

embeddings, respectively, and the vertical arrows are orb-

ifold Riemannian submersions.

Remark 2.2: The well-known construction of Milnor

for isolated hypersurface singularities shows that Lf is

(n-2)-connected. Hence, the only non-vanishing integral

homology groups are Hn−1(Lf , Z) and Hn(Lf , Z).

Proposition 2.3: The link Lf is

1. negative Sasakian if and only if d−
∑

wi > 0,

2. null Sasakian if and only if d−
∑

wi = 0,

3. positive Sasakian if and only if d−
∑

wi < 0.
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At first glance Proposition 2.3 appears to be a reasonable

generalization of the case of smooth hypersurface of de-

gree d in Pn
C. To appreciate subtleties of codimension 1

singularities, let us consider the following example.

Example 2.4: [Brieskorn 3-Manifolds L(a, b, c)].

Let f(z0, z1, z2) = za
0 + zb

1 + zc
2 and we denote Lf =

L(a, b, c) and Zf = X(a, b, c). Note that the relevant

sign in Proposition 2.3 is that of

abc− ab− bc− ca = abc(1− 1/a− 1/b− 1/c).

Milnor [1975] studied the links L(a, b, c) showing that

their geometry indeed depends on this sign. He called the

three types of links hyperbolic (negative Sasakian) Eu-

clidean (null Sasakian), and spherical (positive Sasa-

kian). Milnor shows that these 3 cases correspond to 3

Thurston geometries

1. S̃L(2, R)/Γ,

2. Nil3/Γ.

3. S3/Γ.

Of course, there are only few spherical cases: L(2, 2, k) =

S3/Zk, L(2, 3, 5) = S3/I∗, L(2, 3, 4) = S3/T ∗,

L(2, 3, 3) = S3/O∗ and even fewer Euclidean links. What

is important is that π1(L(a, b, c)) is finite only for spher-

ical links. In particular, Euclidean and hyperbolic links
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cannot have a metric of positive Ricci curva-

ture. Only spherical links obviously have such a metric.

Yet, it is easy to check that when the exponents are pair-

wise relatively prime the transverse space X(a, b, c) '

P1
C. Hence, there are infinitely many hyperbolic links

such that their transverse geometry is a P1
C with orbifold

singularities. Clearly, looking at X(a, b, c) as a complex

curve does not tell the whole story we want. But our

notion of orbifold first Chern class consistently explains

Sasakian geometry of these links.

•Milnor Fibration Theorem

There is a fibration of (S2n+1−Lf)−→S1 whose fiber F is

an open manifold that is homotopy equivalent to a bou-

quet of n-spheres Sn ∨ · · · ∨ Sn. The Milnor number

µ of Lf is the number of Sn’s in the bouquet. It is an

invariant of the link which can be calculated explicitly

in terms of the degree d and weights w by the formula

µ = µ(Lf) =
∏n

i=0(
d
wi
− 1). The closure F̄ of F has

the same homotopy type as F and is a compact manifold

with boundary precisely the link Lf . So the reduced ho-

mology of F and F̄ is only non-zero in dimension n and

Hn(F, Z) ≈ Zµ.
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Using the Wang sequence of the Milnor fibration to-

gether with Alexander-Poincare duality gives the exact

sequence

0→Hn(Lf , Z)→ Hn(F, Z)
I−h∗

−−→Hn(F, Z)→ Hn−1(Lf , Z)→ 0

where h∗ is the monodromy map (or characteristic

map) induced by the S1
w action. From this we see that

Hn(Lf , Z) = ker(I − h∗) is a free Abelian group, and

Hn−1(Lf , Z) = Coker(I − h∗) which in general has tor-

sion, but whose free part equals ker(I−h∗). So the topol-

ogy of Lf is encoded in the monodromy map h∗. There

is a well-known algorithm due to Milnor and Orlik

[1970] for computing the free part of Hn−1(Lf , Z) in

terms of the characteristic polynomial ∆(t) = det(tI −

h∗), namely the Betti number bn(Lf) = bn−1(Lf) equals

the number of factors of (t− 1) in ∆(t).

There are certain cases when simple calculations yield

a lot of information about homology of the link. Such is

the case when the link is rational homology sphere.

Proposition 2.5: The following hold:

1. Lf is a rational homology sphere iff ∆(1) 6= 0.

2. Lf is a homology sphere iff |∆(1)| = 1.

3. If Lf i s a rational homology sphere, then the

order of Hn−1(Lf , Z) equals |∆(1)|.
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Remark 2.6 Orlik [1978] proposed an algorithmic

way of computing torsion of any Lf . He made a conjec-

ture that his algorithm always produces correct answer.

The conjecture was later proved by Randell [1980]

for special links (such as Brieskorn-Pham links discussed

next). As far as I know this conjecture is still open.

Example 2.7:

• w = (1, 1, 1, 1), f = z0 + z1 + z2 + z3, d = 1.

Zf = CP(2), Lf = S5.

• w = (1, 1, 1, 1), f = z2
0 + z2

1 + z2
2 + z2

3 , d = 2.

Zf = CP(1)× CP(1), Lf = S2 × S3.

• w = (1, 1, 1, 1), f = z3
0 + z3

1 + z3
2 + z3

3 , d = 3.

Zf = CP(2)#6CP(2) , Lf = 6#(S2 × S3).

• w = (1, 1, 1, 2), f = z4
0 + z4

1 + z4
2 + z2

3 , d = 4.

Zf = CP(2)#7CP(2) , Lf = 7#(S2 × S3).

• w = (1, 1, 2, 3), f = z6
0 + z6

1 + z3
2 + z2

3 , d = 6.

Zf = CP(2)#8CP(2) , Lf = 8#(S2 × S3).
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• w = (1, 1, 1, k), f = zk+1
0 + zk+1

1 + zk+1
2 + z0z3,

d = k + 1.

Lf = k#(S2 × S3).

• w = (1, 2, 3, 5), f = z10
0 + z5

1 + z3
2z1 + z2

3 , d = 10

Lf = 9#(S2 × S3).

• w = (11, 29, 39, 49), f = z8
0z2 + z4

1z0 + z3
2 + z2

3z1,

d = 127

Lf = 2#(S2 × S3).

• w = (13, 35, 81, 128), f = z17
0 z1 + z5

1z2 + z3
2z0 + z2

3 ,

d = 256

Lf = S2 × S3.

• w = (17, 34, 75, 125, 175), f = homework, d = 425

|H3(Lf , Z)| = 1712.

• w = (127, 2266, 3651, 6043, 8435), f = homework,

d = 20521

|H3(Lf , Z)| = 20521.

• w = (127, 2392, 3399, 6043, 8561), f = homework,

d = 20521

|H3(Lf , Z)| = 20521.
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• Brieskorn-Pham Links

In his famous work, in 1966 Brieskorn considered

special links often called Brieskorn-Pham links (or

BP for short) L(a) defined by

n∑

i=0

|z2
i | = 1, fa(z) = za0

0 + · · · + zan
n = 0.

To the vector a = (a0, · · · , an) ∈ Zn+1
+ one associates a

graph G(a) whose n+1 vertices are labeled by a0, · · · , an.

Two vertices ai and aj are connected iff gcd(ai, aj) > 1.

Let Cev denote the connected component of G(a) deter-

mined by the even integers. Note that all even vertices

belong to Cev, but Cev may contain odd vertices as well.

Then we have the so-called Brieskorn Graph Theo-

rem

Theorem 2.8: The link L(a) (with n ≥ 3) is home-

omorphic to the (2n-1)-sphere if and only if either of

the following conditions hold

1. G(a) contains at least two isolated points,

2. G(a) contains one isolated point and Cev has an

odd number of vertices and for any distinct ai, aj ∈

Cev, gcd(ai, aj) = 2.
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•Homotopy Groups of Spheres

Recall that by seminal work of Milnor, Kervaire and

Milnor, and Smale, for each k ≥ 5, differentiable

homotopy spheres of dimension k form an Abel-

ian group Θk, where the group operation is connected

sum. Θk has a subgroup bPk+1 consisting of those ho-

motopy k-spheres which bound parallelizable manifolds

Vk+1. Kervaire and Milnor proved that bP2m+1 = 0 for

m ≥ 1, bP4m+2 = 0, or Z2 and is Z2 if 4m + 2 6= 2i − 2

for any i ≥ 3. The most interesting groups are bP4m for

m ≥ 2. These are cyclic of order

|bP4m| = 22m−2(22m−1 − 1) numerator
(4Bm

m

)
,

where Bm is the m-th Bernoulli number. Thus, for exam-

ple |bP8| = 28, |bP12| = 992, |bP16| = 8128 and |bP20| =

130, 816. In the first two cases these include all exotic

spheres. The correspondence is given by

KM : Σ 7→
1

8
τ (V4m(Σ))mod|bP4m|,

where V4m(Σ) is any parallelizable manifold bounding Σ

and τ is its signature.
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In the case of BP links, by the Milnor Fibration Theorem

we can take V to be the Milnor fiber which is diffeomor-

phic to V 2n
a = {z ∈ Cn+1 | fa(z0, · · · , zn) = 1}. Brieskorn

shows that the signature of V 2n
a can be written combina-

torially as

#{x ∈ Z2m+1 | 0 < xi < ai and 0 <
2m∑

j=0

xi

ai
< 1mod2}

−#{x ∈ Z2m+1 | 0 < xi < ai and 1 <
2m∑

j=0

xi

ai
< 2mod2},

where n = 2m.

Example 2.9: Let us consider the Brieskorn-Pham

link L(6k − 1, 3, 2, 2, 2). By Brieskorn Graph Theorem

this is a homotopy 7-sphere. One can easily compute

the signature using the above formula to find out that

τ (L(6k − 1, 3, 2, 2, 2)) = 8k. Hence L(5, 3, 2, 2, 2) = Σ7
1

is an exotic 7-sphere and it is called Milnor generator

(all others can be obtained from it by taking connected

sums).

Remark 2.10: Note that the links L(6k − 1, 3, 2, 2, 2)

are all positive Sasakian manifolds. Similarly, all links in

Example 2.7 are positive, in particular #k(S
2×S3) has a

positive Sasakian structure for all k ≥ 0. Hence, they all
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admit Sasakian metric of positive Ricci curvature. In ad-

dition, we can consider the links L(6k−1, 3, 2, . . . , 2) (of

dimension 3mod(4)) and L(p, 2, 2, . . . , 2) (of dimension

1mod(4)).

Theorem 2.11: All homotopy spheres that are bound-

aries of parallalizable manifolds admit Sasakian met-

ric of positive Ricci curvature.

Theorem 2.12: For any k ≥ 0, #k(S
2 × S3) admits

a Sasakian metric of positive Ricci curvature.

Theorem 2.11 was first established using surgery the-

ory techniques by Wraith [1998]. Our proof which uses

techniques described in these lectures [Boyer, Galicki,

Nakamaye’2003] appeard later in Topology.

Theorem 2.12 is a special case of a well-known result of

Sha and Yang [1991] who showed that positive Ricci

curvature metrics can exist on manifolds with arbitrar-

ily large second Betti number. By Gromov’s

[1980] famous theorem that cannot happen for met-

rics with positive sectional curvature.

Question 2.13: What about Einstein condition?

Suppose Zf is Fano. Could one perhaps prove exis-

tence (continuity method?) of a KE metric on Zf?

Every time this can successfully be done we automat-

ically get an SE metric on the link Lf .
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• KE Metrics on Fano Orbifolds

Let (Z, J, g, ωg) be a compact Käher manifold (orbifold).

We would like to know if one can always find a Kähler-

Einstein metric h such that [ωh] = [ωg]. Recall that on a

Kähler-Einstein manifold

ρg = λωg,

where the metric can be normalized so that λ = ±1 or

0. Since 2πc1(Z) = λ[ωg] we have

• When c1(Z) > 0 we must have λ = +1.

• When c1(Z) < 0 we must have λ = −1.

• When c1(Z) = 0 we must have λ = 0.

Suppose there exists an Einstein metric h with Kähler

from in the same cohomology class. We have globally

defined functions φ, f ∈ C∞(Z, R) such that

ρg − λωg = i∂∂̄f, ωh − ωg = i∂∂̄φ.

After fixing appropriate normalization we get, in local

coordinates, the following Monge-Ampère equation

det(gij̄ + ∂2φ
∂zi∂z̄j

)

det(gij̄)
= ef−λφ.

The case of λ = −1 is actually the simplest and was

solved by Aubin and independently by Yau. The case
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λ = 0 follows from the Yau’s solution to the original

Calabi Problem. We are interested in λ = +1 case.

One tries to solve the Monge-Ampère equation

det(gij̄ + ∂i∂̄j̄φt)

det(gij̄)
= e−tφt+tf+Ct, gij̄ + ∂i∂̄j̄φt > 0

We start with φ0 and C0 = 0 and we try to reach t =

1, where the metric will be Kähler-Einstein. The so

called continuity method sets out to show that the

interval where solutions exist is both open and closed.

Openness follows from the Implicit Function

Theorem but there are well-known obstructions to

closedness. It turns out that the critical step is a 0th

order estimate. That is, as the values of t for which the

Monge-Ampère equation is solvable approach a critical

value t0 ∈ [0, 1], a subsequence of the φt converges to a

function φt0 which is the sum of a C∞ and of a plurisub-

harmonic function. Tian showed that we only need to

prove ∫

Z

e−γtφt0ωn
0 < +∞

for some γ ∈ ( n
n+1, 1), where ω0 is the Kähler form of

g0 = g.

The existence problem for positive KE metrics has

been studied by many people: Yau, Tian, Siu, Nadel,
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and most recently by Demailly and Kollár who work

in the orbifold category.

Theorem 2.14 [Boyer,Galicki,Kollár’ 2003] Let

Z(a) be the transverse space of the BP link L(a). Let

Ci = lcm(a0, . . . , âi, . . . , an), bi = gcd(Ci, ai). Then

Z(a) is Fano and it has a Kähler-Einstein metric if

1. 1 <
∑n

i=0
1
ai

,

2.
∑n

i=0
1
ai

< 1 + n
n−1

mini{
1
ai
}, and

3.
∑n

i=0
1
ai

< 1 + n−1
n−1

mini,j{
1

bibj
}.

In this case the link L(a) admits a SE metric with

one-dimensional isometry group.

Remark 2.15 More generally, we consider weighted ho-

mogeneous perturbations

Y (a, p) := (
n∑

i=0

zai
i + p(z0, . . . , zn) = 0) ⊂ Cn+1,

where weighted degree(p) = d = lcm(a0, . . . , an). The

genericity condition we need, which is always satisfied by

p ≡ 0 is: The intersections of Y (a, p) with any

number of hyperplanes (zi = 0) are all smooth

outside the origin. Theorem 2.14 holds true for any

Y (a, p)/C∗w and L(a, p).
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•Einstein Metric on Spheres
We would like to demonstrate the power of Theorem

2.14 in the case L(a, p) is restricted to be a homotopy

sphere. First, little history:

• [Gauss, Riemann] Any standard sphere Sn, n > 1,

admits a metric of constant positive sectional curvature.

These canonical metrics are SO(n+1)-homogeneous and

Einstein, i.e., the Ricci curvature tensor is a constant

positive multiple of the metric.

•[1974] The spheres S4m+3, m > 1 are known to have

another Sp(m + 1)-homogeneous Einstein metric discov-

ered by Jensen. The metric is obtained from the “quater-

nionic Hopf fibration” S3 → S4m+3 → HPm. Since both

base and fiber are Einstein spaces with positive Einstein

constant we obtain two Einstein metrics in the canoni-

cal variation. The second metric is also called “squashed

sphere” metric in some physics literature.

•[1978] In addition, S15 has a third Spin(9)-invariant ho-

mogeneous Einstein metric discovered by Bourguignon

and Karcher in 1978. The existence of such metric has

to do with the fact that S15, in addition to fibering over

HP2, also fibers over S8 with fiber S7. Thus 15-sphere

admits 3 different homogeneous Einstein metrics.

•[1982] Ziller proved that these are the only homoge-

neous Einstein metrics on spheres.
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•[1998]Böhm obtained infinite sequences of non-isometric

Einstein metrics, of positive scalar curvature, on S5, S6,

S7, S8, and S9. Böhm’s metrics are of cohomogeneity

one and they are not only the first inhomogeneous Ein-

stein metrics on spheres but also the first non-canonical

Einstein metrics on even-dimensional spheres.

•[2003] Boyer, Galicki, Kollár Einstein metric on

spheres, Annals of Mathematics; to appear.

Theorem 2.14A: On S5 there are at least 68 in-

equivalent families of SE metrics. Some of these fam-

ilies admit non-trivial continuous SE deformations.

The biggest constructed family has real dimension

10.

Remarks:

• Our metrics differ from Böhm’s. His have rather large

isometry group while all ours (and this comment applies

to all dimensions) are, by construction, of “maximal” co-

homogeneity, i.e., they have one-dimensional isom-

etry group.

• Böhm gets infinitely many non-isometric Einstein met-

rics on S5 but he does not get any continuous families

as is typically the case with our metrics.
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• We note that the numbers “68” or “10” in Theo-

rem 2.14A have no special significance: more families

and higher-dimensional moduli can most likely be ob-

tained using the same basic techniques. Nonetheless, in

each odd dimension, they are to illustrate the abundance

of metrics we get: both the number of families as well as

the dimension of the moduli of the largest family increases

doubly exponentially in each next odd dimension.

Theorem 2.14B: Let Σ7
i , be a homotopy 7-sphere

corresponding to the element i ∈ bP8 ' Z28 ' Θ7 in

the Kervaire-Milnor group. Σ7
i admits at least ni in-

equivalent families of SE metrics, where (n1, . . . , n28)

=(376, 336, 260, 294, 231, 284, 322, 402, 317, 309, 252,

304, 258, 390,409, 352, 226, 260, 243, 309, 292, 452, 307,

298, 230, 307, 264, 353), giving a total of 8610 cases. In

each oriented diffeomorphism class some of the fami-

lies depend on a moduli. In particular, the standard

7-sphere Σ7
28 admits an 82-dimensional family of in-

equivalent SE metrics.

Theorem 2.14C: In dimensions (4n + 1) both the

standard and the so-called Kervaire spheres admit

many families of inequivalent SE metrics for each

n ≥ 2.
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Remarks:

• In dimension 9, for example, the Kervaire sphere

is exotic, i.e., bP10 = Z2. A computer search yields

more than 3 · 106 inequivalent families of SE metrics on

both spheres.

• In dimension 13 the Kervaire sphere is diffeomorphic to

the standard sphere as bP14 = 0. In sharp contrast with

the fact that the only Einstein metric known on

S13 is the standard one we find

Theorem 2.14D: The standard sphere S13 admits

over 109 distinct families of SE metrics one of them

depending on 21,300,113,901,610 parameters.

Conjecture: In any odd dimension, all homotopy

spheres which bound parallelizable manifolds admit

families of SE metrics.

Theorem 2.14E [BGKT’2003]: The conjecture is

true in dimensions 11 and 15. More precisely, each ho-

motopy sphere (992 possible oriented diffeomorphism

types) in dimension 11 admits at least one SE metric

and each homotopy 15-sphere which bounds a paral-

lelizable manifold (8128 possible oriented diffeomor-

phism types) admits at least one SE metric.
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Remark:

• Theorem 2.14E required some considerable computing

time. For example, using the same machines and the

same codes would require about 3000 years to extend

the result to the case of 19-spheres (bP20 has 130,816

elements).
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LECTURE 3

Sasakian Geometry of Barden Manifolds
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•Theorems of Smale and Barden

In 1965 Barden proved the following remarkable the-

orem, extending an earlier result of Smale [1962]

Theorem 3.1: The class of simply connected, closed,

oriented, smooth, 5-manifolds is classifiable under dif-

feomorphism. Furthermore, any such M is diffeomor-

phic to one of the spaces

Mj;k1,...,ks = Xj#Mk1# · · ·#Mks,

where −1 ≤ j ≤ ∞, s ≥ 0, 1 < k1 and ki divides

ki+1 or ki+1 =∞. A complete set of invariants is pro-

vided by H2(M, Z) and an additional diffeomorphism

invariant i(M) = j which depends only on the second

Stiefel-Whitney class w2(M).

In these lectures we will refer to a simply connected,

closed, oriented, smooth, 5-manifold as a Barden man-

ifold.
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BUILDING BLOCKS

•X−1 = SU(3)/SO(3); H2(X−1, Z) = Z2,

•X∞ =non-trivial S3 bundle over S2; H2(X∞, Z) = Z,

•Xj, j ∈ N, H2(Xj, Z) = Z2j ⊕ Z2j

•X0 = S5,

•M∞ = S2 × S3 H2(M∞, Z) = Z,

•Mα, α ∈ N; H2(Mα, Z) = Zα ⊕ Zα

When M is spin i(M) = j = 0 as is w2(M) = 0 and Bar-

den’s result is the extension of the well-known theorem

of Smale [1962] for spin 5-manifolds.

The following theorem follows from an old result of J.

Gray [1959]:

Theorem 3.2 A Barden manifold M admits an al-

most contact structure (reduction of the structure

group to U(2) × 1) if and only if j = 0 or j = ∞.

In 1991 Geiges showed that there are no other obstruc-

tions to contactness. That is every almost contact Barden

manifold admits a contact structure. Geiges also shows

that
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Theorem 3.3 A Barden manifold M admits a reg-

ular contact structure if and only if H2(M, Z) has

no torsion.

Hence, the only Barden manifolds with regular contact

structure are either #kM∞ (spin) or X∞#(k − 1)M∞
(non-spin). Both can be constructed explicitly as circle

bundles over Z = P2
C#kP2

C.

•Some Questions and Problems

Question 3.4 Let M Barden manifold with j =

0,∞. When does M admit a quasi-regular con-

tact structure? Can H2(M, Z) obstruct existence

of such a structure?

We saw that most 3-manifolds, even though being con-

tact, do not support quasi-regular contact structures. The

ones that do are Seifert fibered and they also admit Sa-

sakian structures. The above question can be rephrased:

Which Barden manifolds are Seifert fibrations

over compact symplectic orbifolds?

Questions 3.5 Let M be a Barden manifold with

j = 0,∞. When does M admit a Sasakian structure?

Can one describe all Sasakian structures on a given

(on any?) M?
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Question 3.6 Let M Barden manifold. When does

M admit a metric of positive Ricci curvature?

The expected answer is ALL but remarkably little is

known about the subject. One positive result was men-

tioned earlier is due to Sha and Yang [1991] from

which it follows that such metrics exist on any #kM∞.

In addition, both X−1 and X∞ carry such metrics (even

Einstein metrics). The relevant question in the context

of Sasakian geometry is

Questions 3.7 Let M be a Barden manifold with

j = 0,∞. When does M admit a positive Sasakian

structure? More generally, given some (any) M , can

one describe all positive Sasakian structures on M?

Full answer to the above question would amount to a

complete classification of cyclic log del Pezzo sur-

faces. Unlike smooth log del Pezzo surfaces the latter

occur with remarkable abundance and are very poorly un-

derstood. However, we will see that a complete answer

can be given in some special cases.
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Question 3.8 Let M be a Barden manifold. When

does M admit an Einstein metric (SE)?

There are several constructions that lead to such Einstein

metrics in dimension 5. We shall briefly review all of

them:

• [Regular Sasakian-Einstein Manifolds] These

are circle bundle over del Pezzo surfaces with KE metrics

and therefore we have a complete classification via

Theorem 3.9: [Tian’1990]The following del Pezzo

surfaces admit Kähler-Einstein metrics: CP2, CP1 ×

CP1, CP2#nCP2, 3 ≤ n ≤ 8. Furthermore, the mod-

uli space of KE structures in each case is completely

understood.

Theorem 3.10: [Friedrich-Kath’1990] Let Sl =

S5#lM∞.

1. For each l = 0, 1, 3, 4, there is precisely one regular

SE structure on Sl.

2. For each 5 ≤ l ≤ 8 there is a 2(l− 4) complex pa-

rameter family of inequivalent regular SE struc-

tures on Sl.

3. For l = 2 or l ≥ 9 there are no regular SE struc-

tures on Sl.
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• [Homogeneous Einstein Metrics] The symmetric

metrics on X0 = S5, X−1 = SU(3)/SO(3) are Einstein.

Furthermore, M∞ = S2× S3 admits infinitely many ho-

mogeneous Einstein metrics discovered by Wang and

Ziller [1990].

• [Böhm Metrics] Böhm has explicitly constructed

cohomogeneity one Einstein metrics on X0 = S5 and on

M∞ = S2 × S3.

• [Cohomogeneity One Bundle Metrics on M∞

and X∞] Several groups of string theory physicists have

recently obtained explicit examples of cohomogeneity one

Einstein metrics on X∞ and SE metrics on M∞

(Lu-Page-Pope, Hashimoto-Sakaguchi-Yasui,

Gauntlett-Martelli-Sparks-Waldram,

Gibbons-Hartnoll-Yasui [all in 2004]) .

Question 3.11 Let M be a Barden manifold. How

big is the moduli of the Einstein (SE) metrics on

M? Can the moduli space be infinite dimensional?

Problem/Question 3.12 Classify all null Sasakian

Barden manifolds. Can one describe all null Sasakian

structure on a given M?

The second question would involve understanding all orb-

ifold K3-surfaces with cyclic quotient singular-

ities.
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{Barden Manifolds}
∪

{Contact Manifolds}
∪

{Sasakian Manifolds}
∪

{Positive Sasakian Manifolds}
∪

{Sasakian−Einstein Manifolds}
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•Barden Manifolds as Links and Seifert
Bundles

Definition [Orlik-Weigreich’75, Kollár’04] Let

Z be a normal complex space. A Seifert C∗-bundle

over Z is a normal complex space Y together with a

morphism f : Y−→Z and a C∗-action on Y such that

1. f is Stein (that is, the preimage of an open Stein

subset of Z is Stein).

2. For every x ∈ Z, the C∗-action on the reduced

fiber Yx := redf−1(x) is C∗-equivariantly biholo-

morphic to the natural C∗-action on C∗/Zm, for

some m = m(x), where Zm ⊂ C∗ denotes the mth

roots of unity.

The number m(x) is called the multiplicity of the

Seifert fiber over x. We assume that generically it is

equal to 1.

Every Seifert C∗-bundle over Z contains a real hy-

persurface M ⊂ Y with an S1-action. We call f :

M−→Z the Seifert S1-bundle over Z.
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•Vanishing Torsion Case

In this case we only have to worry about #kM∞ (spin)

or X∞#(k − 1)M∞ (non-spin). The latter are never

SE so we leave this case out for the moment. We saw

that #kM∞ all occur as positive Sasakian links. Using

various link models of Barden manifolds we were able to

show that

Theorem 3.13 [Boyer-Galicki-Nakamaye] Bar-

den manifolds #kM∞ admit families of quasi-regular

(not regular) SE structure for k = 0, . . . , 9.

With Boyer we conjectured that SE metrics should

exist on any #kM∞. Using Seifert bundle approach in a

recent paper Kollár has proved this conjecture showing:

Theorem 3.14 [Kollar’04] Barden manifolds #kM∞

admit families of (2k − 2)-dimensional quasi-regular

SE structure for each k > 6.

The only remaining question now is that concerning

the moduli. To be more precise, on may ask

Problem 3.15 Describe the moduli of SE structures

on any Barden manifolds #kM∞? Start with S5,

S2 × S3?
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•Pure Torsion Case (R.H.S.)

Using Theorem 2.14 and Orlik’s algorithm we get the

following list of rational homology 5-spheres which admit

SE metrics

L(a) Torsion

L(3, 3, 3, k), gcd(k, 3) = 1, k > 5 Zk ⊕ Zk

L(2, 4, 4, k), gcd(k, 2) = 1, k > 10 Zk ⊕ Zk

L(2, 3, 6, k), gcd(k, 6) = 1, k > 12 Zk ⊕ Zk

The three series above satisfy
∑2

i=0
1
ai

= 0. In the

case when
∑2

i=0
1
ai

< 0 one can easily see that there

are 16 more rational homology 5-spheres which satisfy

inequalities of Theorem 2.14. An example of such a link

is L(3, 4, 4, 4) whose 2-torsion equals Z3 ⊕ Z3 ⊕ Z3 ⊕

Z3 ⊕ Z3 ⊕ Z3. Hence, L(3, 4, 4, 4) is diffeomorphic to

M3#M3#M3. In particular, we get the following

Theorem 3.16 [Boyer-Galicki’04]The Barden man-

ifold Mk admits SE structure for each k > 5 prime to

3 and for each k > 10 prime to 2.

Using Seifert bundle approach Kollár was able to show

that very few Barden manifolds admit positive Sasakian

structures. Actually 2-torsion group obstructs both

Sasakian and positive Sasakian geometry.
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Theorem 3.17 [Kollár’04] Let M be a positive Bar-

den manifold. Then the torsion group of H2(M, Z) is

one of the following:

1. (Zm)2 for any m ∈ Z+,

2. (Zn)
4, n = 3, 4, 5,

3. (Z3)
6,

4. (Z3)
8,

5. (Z2)
2n, for any m ∈ Z+.
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Theorem 3.18 [Kollár’04] Let M be a Barden man-

ifold which is a rational homology sphere. Suppose M

admits a positive Sasakian structure and the torsion

group of H2(M, Z) contains an element of order at

least 12. Then

1. M = Mm for some m not divisible by 30.

2. The number of Seifert bundle structures (charac-

teristic foliations) on M varies between 1 and 4

depending on n modulo 30.

3. Each Seifert bundle structure gives raise to a 2-

dimensional family of SE metrics parameterized

by the moduli space of genus 1 curves.

Theorem 3.18 is a special case of a more general state-

ment. It turns out that most contact of rational homol-

ogy 5-spheres do not admit any Sasakian structure. For

example,

Theorem 3.19 [Kollár’04] Let M be a Barden man-

ifold which is a rational homology sphere. If M ad-

mits a Sasakian structure, and the order of 2-torsion

is p2k for p prime and k odd then

M = #kMp.
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Hence, for instance, for any p > 1 the R.H.S. Mp#Mp2

admits no Sasakian structure. It is possible that the ratio-

nal homology 5-spheres that do not admit Sasakian struc-

ture are simply examples of contact 5-manifolds

with no quasi-regular Reeb vector field.

•Mixed Case

Note that the links in the previous table have companions

with non-trivial second Betti number and by Theorem

2.14 they too admit Sasakian-Einstein metrics. We list

the relevant information in the table below:

L(a) b2(L(a))

L(3, 3, 3, 3n), n > 2 6

L(2, 4, 4, 2n), gcd(n, 2) = 1, n > 5 3

L(2, 4, 4, 4n), n > 2 7

L(2, 3, 6, 2n), gcd(n, 3) = 1, n > 12 2

L(2, 3, 6, 3n), gcd(n, 2) = 1, n > 12 4

L(2, 3, 6, 6n), n > 4 8

Theorem 3.20 [Boyer-Galicki’04]The Barden man-

ifold Mn#kM∞ admits SE structure for each k =

2, 3, 4, 6, 7, 8 and each n > 12.

Again, with his Seifert bundle approach was able to

prove a much stronger result:
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Theorem 3.21 [Kollár’04] Let M be a Barden man-

ifold. Suppose M admits a positive Sasakian struc-

ture and H2(M, Z) = Zn ⊕ Zm ⊕ Zm with m ≥ 12.

Then

1. n ≤ 8.

2. There are 93 cases for each m ≥ 12.

3. Each Seifert bundle structure yields at least a 2-

dimensional family of SE metrics.

Theorem 3.22 [Kollár’04] Let M be a Barden man-

ifold. Suppose M admits a positive Sasakian struc-

ture and H2(M, Z) = Zn ⊕ (Z5)
4. Then

1. M = M5#M5.

2. The Seifert bundle structure (characteristic folia-

tion) is unique.

3. M admits a 4-dimensional family of SE metrics

naturally parameterized by the moduli of genus 2

curves.

Theorem 3.23 [Kollár’04] Let M be a Barden man-

ifold. Suppose M admits a null Sasakian structure.

Then M = #kM∞ with 1 < k ≤ 21.

Most of the cases already occur on the famous list of

Reid of the weighted homogeneous hypersurfaces Xf,d ⊂
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PC(w0, w1, w2, w3). However, k = 2, 17 are missing. It is

probably too hard to classify all Seifert bundle structures.

But one might be able to obtain complete description for

some cases.
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