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“WHY?” and “WHAT?”

0. Introduction
(i) what’s known, some problems and questions
(ii) some answers and theorems

“HOW?”

1. Riemannian Geometry

(i) Sasakian manifolds: basic definitions and properties

(ii) fundamental foliations and transverse geometry
2. Differential Topology

(i) Sasakian geometry of links of isolated hypersurface sin-
gularities

(ii) Differential topology of the Brieskorn-Pham links
3. Global Analysis — Algebraic Geometry

(i) Calabi Conjecture I
(ii) Calabi Conjecture II

(iii) K&ahler-Einstein metrics on Brieskorn-Pham orbifolds
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e Any standard sphere S™, n > 1, admits a metric of con-
stant positive sectional curvature. These canonical metrics
are SO(n+1)-homogeneous and Einstein, i.e., the Ricci cur-
vature tensor is a constant positive multiple of the metric.

¢[1974] The spheres S*™*3 m > 1 are known to have an-
other Sp(m+ 1)-homogeneous Einstein metric discovered by
Jensen. The metric is obtained from the “quaternionic Hopf
fibration” S2 — S§4™+3 — HP™. Since both base and fiber
are Einstein spaces with positive Einstein constant we obtain
two Einstein metrics in the canonical variation. The sec-
ond metric is also called “squashed sphere” metric in some
physics literature.

¢[1978] In addition, S'° has a third Spin(9)-invariant ho-
mogeneous Einstein metric discovered by Bourguignon and
Karcher in 1978. The existence of such metric has to do
with the fact that S'°, in addition to fibering over HP?,
also fibers over S® with fiber S7. Thus 15-sphere admits 3
different homogeneous Einstein metrics.

¢[1982] Ziller proved that these are the only homogeneous
Einstein metrics on spheres.

¢[1998] Bohm obtained infinite sequences of non-isometric
Einstein metrics, of positive scalar curvature, on S°, S¢, S7,
S% and SY. Bohm’s metrics are of cohomogeneity one and
they are not only the first inhomogeneous Einstein metrics
on spheres but also the first non-canonical Einstein metrics
on even-dimensional spheres.



Remark: Even with Bohm’s result Einstein metrics on
spheres appear to be rather rare. But are they really?

Questions 1: Are there other inhomogeneous Einstein met-
rics on standard spheres?

Questions 2: Do some exotic spheres admit Einstein met-
rics of positive scalar curvature?

In odd dimensions we will provide some surprising answers
to these questions.



Theorem 1 [Boyer-Galicki-Kollar’2003]: On S° there
are at least 68 inequivalent families of Sasakian-FEinstein
metrics. Some of these families admit non-trivial continuous
Sasakian-Finstein deformations. The biggest constructed
family has real dimension 10.

Remarks:

e Our metrics differ from Bohm’s. His have rather large
isometry group while all ours (and this comment applies to
all dimensions) are, by construction, of “maximal” cohomo-
geneity, i.e., they have one-dimensional isometry group.

e Bohm gets infinitely many non-isometric Einstein metrics
on S° but he does not get any continuous families as is
typically the case with our metrics.

e We note that the numbers “68” or “10” in Theorem 1 no
special significance: more families and higher-dimensional
moduli can most likely be obtained using the same basic
techniques. Nonetheless, in each odd dimension, they are to
illustrate the abundance of metrics we get: both the number
of families as well as the dimension of the moduli of the
largest family increases doubly exponentially in each next
odd dimension.



Theorem 2 [Boyer-Galicki-Kollar’2003]: Let X7, be a
homotopy 7-sphere corresponding to the element i € bPg ~
Zog ~ O~ in the Kervaire-Milnor group. ZZ admits at least
n; inequivalent families of Sasakian-FEinstein metrics, where
(ny,...,n08) =(376, 336, 260, 294, 231, 284, 322, 402, 317,
309, 252, 304, 258, 390,409, 352, 226, 260, 243, 309, 292,
452, 307, 298, 230, 307, 264, 353), giving a total of 8610
cases. In each oriented diffeomorphism class some of the
families depend on a moduli. In particular, the standard 7-
sphere Y1 admits an 82-dimensional family of inequivalent
Sasakian-FEinstein metrics.

Theorem 3 [Boyer-Galicki-Kollar’2003]: In dimensions
(4n+1) both the standard and the so-called Kervaire spheres
admit many families of inequivalent Sasakian-FEinstein met-
rics for each n > 2.

Remarks:

e In dimension 9, for example, the Kervaire sphere is exotic,
i.e., bPig = Zy. A computer search yields more than 3 - 10°
inequivalent families of Sasakian-Einstein metrics on both
spheres.

e In dimension 13 the Kervaire sphere is diffeomorphic to
the standard sphere as bP14 = 0. In sharp contrast with the
fact that the only Einstein metric known on S'3 is the
standard one we find

Corollary: The standard sphere S'° admits over 10° dis-
tinct families of Sasakian-Finstein metrics one of them de-
pending on 21,300,113,901,610 parameters.



Conjecture [Boyer-Galicki-Kollar’2003]: In any odd
dimension, all homotopy spheres which bound parallelizable
manifolds admit families of Sasakian-FEinstein metrics.

Theorem 4 [Boyer-Galicki-Kollar-Thomas’2003]: The
conjecture is true in dimensions 11 and 15. More precisely,
each homotopy sphere (992 possible oriented diffeomorphism
types) in dimension 11 admits at least one Sasakian-FEinstein
metric and each homotopy 15-sphere which bounds a par-
allelizable manifold (8128 possible oriented diffeomorphism
types) admits at least one Sasakian-FEinstein metric.

Remark:

e Theorem 4 required some considerable computing time.
For example, using the same machines and the same codes

would require about 3000 years to extend the result to the
case of 19-spheres (bP( has 130,816 elements).



Important Remark: The methods of proving such exis-
tence results apply to a wide range of smooth contact
manifolds. In this talks I have chosen homotopy spheres
to illustrate the power of the technique. To give another
example here are two more recent theorems one can get in
5 dimensions:

Theorem 5 [Boyer-Galicki’03]: Let M} be a simply con-
nected, smooth, oriented, compact, spin manifold such that
Hs(M?,7Z) = Zy, ®Zy. Then, for any k such that gcd(k,3) =
1, the rational homology 5-sphere M} admits continuous
families of Sasakian-FEinstein metrics.

Theorem 6 [Kollar’04]: Let M be a simply connected,
smooth, oriented, compact, spin 5-manifold with by(M) =
n and such that Hy(M,Z) = 7Z™. Then for any n > 6,
M admits infinitely many (2n — 2)-dimensional families of
Sasakian-FEinstein metrics.

Remarks:

e By Smale’s theorem simply connected, smooth, oriented,
compact, spin 5-manifold is determined by its second homol-
ogy.

e Theorem 6, without the statement about the moduli, is
also true forn =0,1,...,5.



1. RIEMANNIAN GEOMETRY

Sasakian Manifolds

Definition-Proposition: A Riemannian manifold (M, g)
is called Sasakian if any one, hence all, of the following
equivalent conditions hold:

(i) There exists a Killing vector field ¢ of unit length on
M so that the tensor field ® of type (1,1), defined by
®(X) = Vx¢, satisfies the condition

(Vx®)(Y) = g(§,Y)X —g(X,Y){

for any pair of vector fields X and 'Y on M.

(ii) There exists a Killing vector field £ of unit length on M
so that the Riemann curvature satisfies the condition

R(X,8)Y = g(§Y)X —g(X,Y)¢,

for any pair of vector fields X and 'Y on M.

(iii) The metric cone on M (C(M),g) = (Ry x M, dr*+r?g)
is Kahler.

We refer to the quadruple S = (g,n,&,®) as a Sasakian
structure on M, where n is the 1-form dual vector field &.
It is easy to see that 7 is a contact form whose Reeb vector
field is £. In particular S = (g,7n,&, ®) is a special type of
metric contact structure.



The vector field £ is nowhere vanishing, so there is a one-
dimensional foliation F¢ associated to any Sasakian struc-
ture, called the characteristic foliation. We will denote the
space of leaves of this foliation by Z. Each leaf of F¢ has
a holonomy group associated to it. The dimension of the
closure of the leaves is called the rank of S. We shall be
interested in the case rk(S) = 1.

Definition: When rk(S) = 1 we say that Sasakian structure
S is quasi-regular. If F; defines a principal S' bundle, we
say that S is regular.

When § is compact and quasi-regular then then Z has a
structure of a Riemannian orbifold (or a V-manifold). Z is
a smooth manifold in the regular case.

Definition-Proposition: A Sasakian manifold (M, g) is
Sasakian-Einstein if the metric g is also Finstein. For any
2n+1-dimensional Sasakian manifold Ric(X,£) = 2nn(X)
implying that any Sasakian-FEinstein metric must have posi-
tive scalar curvature. Thus any complete Sasakian-FEinstein
manifold must have finite fundamental group. Furthermore
the metric cone (C(M),g) = (Ry x M, dr? +r?g) is Kahler
Ricci-flat (Calabi-Yau).

Definition-Proposition: (M, g) is 3-Sasakian if the metric
cone (C(M),g) = (Ry xS, dr?+r2g) on M is hyperkahler.
In particular, any 3-Sasakian manifold is Einstein.

The following slide presents some fundamental structure the-
orems for Sasakian and Sasakian-Einstein manifolds:
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Characteristic Foliation
and

Transverse Kahler Geometry

Theorem: Let (M, g) be a compact quasi-regular Sasakian
manifold of dimension 2n + 1, and let Z denote the space of
leaves of the characteristic foliation. Then

(i) The leaf space Z is a Hodge orbifold with Kahler metric

h and Kéhler form w which defines an integral class [w]
in H2 ,(Z,7) so that 7 : (M, g)—(Z,h) is an orbifold
Riemannian submersion. The fibers of w are totally

geodesic submanifolds of M diffeomorphic to S*.

(ii) (M, g) is Sasakian-FEinstein iftf (£, h) is Kahler-FEinstein
with scalar curvature 4n(n + 1).

Theorem: Let (Z,h) be a Hodge orbifold. Let w: M—2Z
be the S V-bundle whose first Chern class is [w], and let
n be a connection 1-form in M whose curvature is 2m*w.
Then M with the metric 7*h + 1 ® n is a Sasakian orbifold.
Furthermore, if all the local uniformizing groups inject into
the group of the bundle S', the total space M is a smooth
Sasakian manifold.

Standard Example:

C"\ {0}



Definition: A Sasakian manifold (M, g) is called positive
if the transverse geometry Z is Fano.

Remarks:

e A complex orbifold Z is Fano if suitably defined orbifold
canonical bundle K z.~ is anti ample. In the case Z is well-
formed, that is when orbifold singularities are of codimen-
sion at least 2, this is the same as saying that Kz (viewed
simply as a complex variety) is anti ample. However, in the
presence of codimension 1 singularities one needs to be more
careful as it is not true in general.

e Just as in the smooth case positivity can also be be ex-
pressed in terms of orbifold Chern classes of Z (first Chern
class ¢1(Z) > 0), or in terms of basic Chern classes of the
characteristic foliation F¢ (first Chern class c;(F¢) > 0).

The following theorem is an orbi-bundle version of the
famous Kobayashi bundle construction of Einstein met-
rics on bundles over positive Kahler-Einstein manifolds.

Theorem: Let (Z,h) be a compact Fano orbifold with
7¢"%(Z) = 0 and Kihler-Einstein metric h. Let m : M—Z

be the S! V-bundle whose first Chern class is ~2)_. Sup-
Ind(z)

pose further that the local uniformizing groups of Z inject
into S'. Then with the metric g = m*h+n®mn, M is a smooth
compact simply connected Sasakian-Finstein manifold.

12



C(M): CONE M /Fe: TRANSVERSE
GEOMETRY M GEOMETRY
SYMPLECTIC CONTACT SYMPLECTIC
KAHLER SASAKIAN KAHLER

) POSITIVE
KAHLER SASAKIAN FANO

CALABI-YAU SASAKIAN FANO
EINSTEIN KAHLER-EINSTEIN

HYPER- FANO, C-CONTACT
KAHLER 3-SASAKIAN KAHLER-EINSTEIN
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2. DIFFERENTIAL TOPOLOGY

Sasakian Structures on Links

Let w = (wp,...,w,) and consider a weighted C*-action
on C"*1 given by (29,...,2,) = (A%02,...,A%"2,), where
the weights w; are all positive integers. We assume that
ged(wo, - - ., wy) = 1.

Definition f € Clz, ..., z,] is a weighted homogeneous
polynomial of weight w and degree d if

FA®020, .., A 2,) = A0 f (20, -+, 2n)-

Assume that the origin in C"*! is an isolated singularity.

Definition Ly = {f = 0} N S?"*1 where S*"*! is the unit
sphere in C**! is called the link of f.

e Fact 1: The well-known construction of Milnor for isolated
hypersurface singularities shows that Ly is (n-2)-connected.
Hence, he only non-vanishing integral homology groups are
H,_1(L¢,Z) and H,(L¢,Z) and they, at least in principle,
can be calculated using Milnor’s fibration theorem.

14



e Fact 2: L is endowed with a quasi-regular Sasakian struc-
ture inherited as a Sasakian submanifold of the sphere §?7+!
with a “weighted” Sasakian structure (&w, 7w, Pw, gw) Which
in the standard coordinates {z; = z; + iy;}}_, on C*"*! =
R27+2 is determined by

w — n " w = i ’La_zaa;,
! D ico wi(TF +y7) S zz:%w(a; y: — YiO;)

and the standard Sasakian structure (£,n, ®,g) on S?7t1,

The quotient of S?"*! by the “weighted S'-action” gener-
ated by the vector field &, is the weighted projective space
P(w) = P(wo, - . ., wy,), and we have a commutative diagram:

Ly — S2nH
Z, s P(w),

where the horizontal arrows are Sasakian and Kahlerian em-
beddings, respectively, and the vertical arrows are orbifold

Riemannian submersions. L is the total space of the prin-
cipal S' V-bundle over the orbifold Z;.

Proposition: The orbifold Z; is Fano iff d — ) w; < 0.

15



Milnor Fibration Theorem

There is a fibration of (S?"*! — L;)—S! whose fiber F is
an open manifold that is homotopy equivalent to a bouquet
of n-spheres S™ V- --V S§™. The Milnor number p of L is the
number of S™’s in the bouquet. It is an invariant of the link
which can be calculated explicitly in terms of the degree d
and weights w by the formula y = p(Ly) = H?:o(w% — 1).
The closure F of F has the same homotopy type as F and is
a compact manifold with boundary precisely the link L¢. So
the reduced homology of F and F' is only non-zero in dimen-
sion n and H,(F,7Z) ~ 7. Using the Wang sequence of the
Milnor fibration together with Alexander-Poincare duality
gives the exact sequence

I—h,
0—H, (L, 7) — H,(F,Z) — H,(F,Z) — Hy_1(Ls,Z)—0

where h, is the monodromy map (or characteristic map) in-
duced by the S, action. From this we see that H,(Ly,7Z) =
ker(I — h,) is a free Abelian group, and H,_1(L¢,Z) =
Coker(I — h,) which in general has torsion, but whose free
part equals ker(I — h,). So the topology of L; is encoded
in the monodromy map h.. There is a well-known algo-
rithm due to Milnor and Orlik for computing the free part
of H, 1(Ls,Z) in terms of the characteristic polynomial
A(t) = det(tl — hy), namely the Betti number b, (Ls) =
bn—1(L¢) equals the number of factors of (¢ — 1) in A(?).

16



Brieskorn-Pham Links

In his famous work, in 1966 Brieskorn considered special
links often called Brieskorn-Pham links (or BP for short)
L(a) defined by

S22l =1,  fa(s) =28 4420 =0,

1=0
To the vector a = (ag, -, a,) € Zﬁ“ one associates a graph
G(a) whose n—+1 vertices are labeled by ag, - - - , a,,. Two ver-

tices a; and a; are connected if and only if ged(a;, aj) > 1.
Let C., denote the connected component of G(a) deter-
mined by the even integers. Note that all even vertices
belong to C¢,, but C., may contain odd vertices as well.
Then we have the so-called Brieskorn Graph Theorem

THEOREM: The link L(a) (with n > 3) is homeomorphic
to the (2n-1)-sphere if and only if either of the following
conditions hold

(i) G(a) contains at least two isolated points,

(ii) G(a) contains one isolated point and C¢, has an odd
number of vertices and for any distinct a;,a; € Cey,
ng(CLi, CLj) = 2.

17



Homotopy Groups of Spheres

Recall that by seminal work of Milnor, Kervaire and Mil-
nor and Smale, for each k& > 5, differentiable homotopy
spheres of dimension k£ form an Abelian group ©j, where
the group operation is connected sum. ©; has a subgroup
bPy1 consisting of those homotopy k-spheres which bound
parallelizable manifolds Vi4i. Kervaire and Milnor proved
that bPsy,41 = 0 for m > 1, bPyp42 = 0, or Zs and is Zy if
4m + 2 # 2 — 2 for any ¢ > 3. The most interesting groups
are bPy,, for m > 2. These are cyclic of order

6Py, | = 22™72(2*™~! — 1) numerator <4§zm >,

where B,, is the m-th Bernoulli number. Thus, for example
|bPg| = 28, [bPyo| = 992, |bPig| = 8128 and |bPyg| = 130, 816.
In the first two cases these include all exotic spheres. The
correspondence is given by

1
KM :Y gT(V4m(Z))m0d|bP4m|a

where Vy,,,(X) is any parallelizable manifold bounding 3 and
T 1s its signature.

18



In the case of BP links, by the Milnor Fibration Theorem
we can take V' to be the Milnor fiber which is diffeomorphic
to V2" = {z € C"*! | fa(z0,-*+,2,) = 1}. Brieskorn shows
that the signature of V2" can be written combinatorially as

2m
#{x € 7> |0 <z <a;and 0< Y ' < Imod2}
o

j=0 "

2m
—#{X e 72mt! | 0<z;<a;and 1 < Z i < 2mod2},
s

j=0 "

where n = 2m.

Example: Let us consider the Brieskorn-Pham link L(6k —
1,3,2,2,2). By Brieskorn Graph Theorem this is a homo-
topy 7-sphere. One can easily compute the signature using
(2.14) to find out that 7(L(6k — 1,3,2,2,2)) = 8k. Hence
L(5,3,2,2,2) = X7 is an exotic 7-sphere and it is called Mil-
nor generator (all others can be obtained from it by taking
connected sums).

Question: Suppose we take a link L so that the transverse
geometry Z; is Fano. Could one perhaps prove existence of
an Kahler-Einstein metric on Z;? Every time this can suc-
cessfully be done we automatically get a Sasakian-FEinstein
metric on the link Ly.

J.-P. Demailly and J. Kollar, Semi-continuity of complex
singularity exponents and Kahler-Einstein metrics on Fano
orbifolds, preprint AG/9910118, Ann. Scient. Ec. Norm.
Sup. Paris 34 (2001), 525-556.
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3. GLOBAL ANALYSIS

Calabi Yau Conjecture I

Let (M,g,J,w,) be a Kahler manifold. In a local complex
chart the metric g is simply a Hermitian matrix g,;. It
was Kahler who discovered that locally the Ricci tensor of a
Kahler metric can be written as

0 0

_In(det(g;5)).

Rz‘; B _327; 853'

Only much later Calabi realized the importance of this re-
markable formula. If one defines the associated 2-form

Pu = —%Ri3dzi A dZ’

which is called the Ricci form one realizes that the coho-
mology class of p,, does not depend on the choice of the
Kahler metric within Kahler class. In fact, it is easy to see
that Ricci form represents the cohomology class 2mci (M).
Naturally Calabi asked if the converse was also true. More
specifically 50 years ago he conjectured that

Calabi Conjecture I Let (M, J, g,w,) be a compact Kahler
manifold, |w,| the corresponding Kahler class and p, the
Ricci form. Consider any real (1,1)-form Q2 on M such that
(2] = 27c1(M). Then there exists a unique Kahler metric h
such that |wp] = [wy] and Q = py,.

Calabi was right and his conjecture in its full generality was
eventually proved by Yau in 1976.

20



Monge-Ampere Problem

Let us reformulate the problem using the so-called global
i00-lemma. We start with a given Kahler metric g on M in
a Kahler class [w,]. Since both 2 and p, represent 27c; (M)
there exists a globally defined function f € C'°°(M,R) such
that

Q— p, = —idOf.

Appropriately, f may be called a discrepancy potential
function for the Calabi problem.

Now, supposed the desired solution of the problem is a met-
ric h with [wy] = [w,] and pp, = 2. We know that the Kéhler
form of h can be written as

Wh = Wy + z85¢,

for some smooth function ¢ € C*°(M,R). In a local, com-
plex chart (and with appropriate choice of constants)

32
det (9i3 T azia(éj)

_ . f
—e’.
det(gij)

Remarks
e This equation is called the Monge-Ampeére equation.

o It is “folklore” that Calabi-Yau Conjecture is also true for
compact orbifolds. In the context of Sasakian geometry and
fundamental foliations the transverse space Z is typically
a compact Kahler orbifold. In the context of foliations a
transverse Yau theorem was proved by El Kacimi-Alaoui
in 1990.
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Calabi Yau Conjecture 11

Kahler-Einstein Condition

Let (M, J, g,w,) be a compact Kdher manifold. We would
like to know if one can always find a Kahler-Einstein metric
h such that |wp| = [w,]. Recall that on a Kéhler-Einstein
manifold

pg — )‘wg7

where the metric can be normalized so that A = +1 or 0.
Since 27mci (M) = Aw,] we have

e When ¢ (M) > 0 we must have A = +1.

e When ¢ (M) < 0 we must have A = —1.

e When ¢, (M)

Suppose there exists an Einstein metric A with Kahler from
in the same cohomology class. We have globally defined
functions ¢, f € C*°(M,R) such that

= 0 we must have A = 0.

pg — Aw, = 100 f, wh, — Wy = 100¢.

After fixing appropriate normalization we get, in local coor-
dinates, the following Monge-Ampere equation

82
det (gi:7 T aziad)zj

) = e/ 729,
det(gij)

22



The case of A = —1 is actually the simplest and was solved
by Aubin and independently by Yau.

Theorem Let (M, J,g,w,) be a compact Kahler manifold
with c¢1(M) < 0. Then there exists a unique Kahler metric
h with [wp] = |wg] such that pp, = —wh,.

When A = +1 the problem is much harder. It has been
known for quite some time that there are actually non-trivial
obstructions to the existence. Let h(M) be the complex Lie
algebra of all holomorphic vector fields on M. Matsushima
proved that one a compact Kahler-Einstein manifold with
c1(M) > 0 h(M) must be reductive, i.e., h(M) = Z(h(M))®
[6(M), h(M)].

Calabi Conjecture II Let (M, g,J,w,) be a Kdhler mani-
fold with c¢1(M) > 0. Suppose h(M) = 0. Then there exists
an Einstein metric h with [wp]| = [wy].

Remark This time Calabi was wrong. This conjecture is
true for smooth del Pezzo surfaces but it already breaks
down for del Pezzo surfaces with orbifold singularities. This
was established by Ding and Tian in 1992. Later Tian
showed that there exist smooth Fano 3-folds which have
h(M) = 0 but do not admit any Kahler-Einstein metric.

23



Continuity Method

Here one tries to solve the Monge-Ampere equation

det(gig —+ 37;53@) tdps+tf+C 3
— - t t = 818_ 0
det (91'3) ’ it J¢t -

We start with ¢y and Cy = 0 and we try to reach ¢t = 1,
where the metric will be Kahler-Einstein. The so called
“continuity method” sets out to show that the interval where
solutions exist is both open and closed. Openness follows
from the Implicit Function Theorem, but there are
well-known obstructions to closedness. It turns out that
the critical step is a Oth order estimate. That is, as the
values of ¢ for which the Monge-Ampere equation is solvable
approach a critical value tg € [0, 1], a subsequence of the ¢,
converges to a function ¢;, which is the sum of a C° and
of a plurisubharmonic function. We only need to prove that

/ eVt Pty < 400
Z

_n_
n+17

This problem has been studied by many people; Yau,
Tian, Siu, Nadel, and most recently by Demailly and Kollar
who work in the orbifold category.

for some v € ( 1), where wy is the Kéhler form of g9 = g.
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Kahler Einstein Metrics on

Brieskorn-Pham Orbifolds

Consider a Brieskorn—Pham singularity
Y(a):= (Z zl =0)c Ctl.

Set C = lcm(a; : ¢ =0,...,n). Y(a) is invariant under the
C*-action

(20, -y 2n) — (AC/302, ... AC/anz ).

In the notation of a previous slide we have w; = C/a; and
d = C. Furthermore, the quotient Y (a)/C* can be identified
with the transverse space Z(a) of the associated BP link
L(a). One can easily see that Y (a)/C* is a Fano orbifold iff

n

More generally, we consider weighted homogeneous pertur-
bations

n

Y(a,p) == () 2% +pl20,...,21) =0) C C",
1=0

where weighted degree(p) = C. The genericity condition
we need, which is always satisfied by p = 0 is: The inter-
sections of Y (a,p) with any number of hyperplanes
(z; = 0) are all smooth outside the origin.

25



The continuity methods produces the following sufficient
conditions on Y (a,p)/C* to admit a K&hler-Einstein met-
ric:

Theorem Let Z(a,p) = Y (a,p)/C* be the transverse space
of the BP link L(a). Then Z(a,p) is Fano and it has a
Kahler-FEinstein metric if

(i) 1<, a%-’

(i) Yor o= <1+ -2 mini{aii}, and

a;
cee 1 . 1
(i) Do o <1+ 325 mmi,j{m}.
In this case the link L(a,p) admits a Sasakian-FEinstein
metric with one-dimensional isometry group.

Remark All but one theorems mentioned the introduction
are special cases of the above result.
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Example Consider sequences of the form a = (2,3,7,m).
By explicit calculation, the corresponding link L(a) gives a
Sasakian-Einstein metric on S° if 5 < m < 41 and m is
relatively prime to at least two of 2,3,7. This is satisfied in
27 cases.

Example The sequence a = (2,3,7,35) is especially note-
worthy. If C(u,v) is any sufficiently general homogeneous
septic polynomial, then the link of

zi + 5 + C (w3, 23)

also gives a Sasakian-Einstein metric on S°. The relevant
automorphism group of C* is

(21, 2, T3, T4) = (@1, T2, Q323 + BTy, Qas).

Hence we get a 2(8 — 3) = 10 real dimensional family of
Sasakian-Einstein metrics on S°.

Example The sequence a = (2,3,7,43,43-31) gives a stan-
dard 7-sphere with a 2(43 — 2) = 82-dimensional family of
Sasakian-Einstein metrics on S7.

Consider the sequence defined by the recursion relation
ck_,_l:cl---ck—kl:ci—ck—kl, c1 = 2.
It starts as

2,3,7,43,1807, 3263443, 10650056950807, ...
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We have

Example
(i) a=(2,3,7,43,1807, 3263443, 10650056950807, m)

(ii) L(a) is just the standard 13-sphere for any suitably cho-
sen m.

(iii) If we choose m = (10650056950807—2)-10650056950807
we get 2(10650056950807 — 2)-dimensional family of de-
formations.
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