HOMEWORK # ¢

Chapter
6

SECTION 1

2. If A is triangular then A — aiJ will be a triangular matrix with a zero entry
in the (i,1) position. Since the determinant of a triangular matrix is the
product of its diagonal elements it follows that

det(A—ayl) =0

Thus the eigenvalues of A are a;),a29,..., 800,

3. A is singular if and only if det(A) = 0. The scalar 0 is an eigenvalue if and
only if

det(4A — OI) = det(A) =0
Thus A is singular if and only if one of its eigenvalues is 0.

4. If A is a nonsingular matrix and X is an eigenvalue of A, then there exists a
nonzero vector x such that

Ax = A
AlAx = A7 x
It follows from Exercise 3 that A s 0. Therefore
1

A7lx = Xx

and hence 1/A is an eigenvalue of A~!.
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In the case where m = 1, A1 = ) is an eigenvalue of A with eigenvector x.
Suppose A* is an eigenvalue of A* and x is an eigenvector belonging to A.

AX*lx = A(A%x) = A(X¥x) = AFAx = Ae+ix

Thus A**! i3 an eigenvalue of A¥*! and x is an eigenvector belonging to -
A¥+1_ This completes the induction proof.

. If A is idempotent and X is an eigenvalue of A with éigenVector x, then

Ax = Mx
A%x = Mx =%
and
A% = Ax = Xx
Therefore
M -2x=0
Since x # 0 it follows that
MN-A=0

A=0 or A=1

. If ) is an eigenvalue of A, then A* is an eigenvalue of A* (Exercise 5). If

A = O, then all of its eigenvalues are 0. Thus A* = 0 and hence A = 0.

. det(A—\I) = det({A-ADNT) = det(AT —AI). Thus A and AT have the same

characteristic polynomials and consequently must have the same eigenvalues.
The eigenspaces however will not be the same. For example if

(i)

then the eigenvalues of A and AT are both given by

Al = Az =1
The eigenspace of A corresponding to A = 1 is spanned by (1, 0)T while
the eigenspace of AT is spanned by (0, 1)7. Exercise 24 shows how the
eigenvectors of A and A7 are related.
det(A — M) = A% — (2cos@)A + 1. The discriminant will be negative unless
¢ is a multiple of 7. The matrix A has the effect of rotating a real vector x
about the origin by an angle of §. Thus Ax will be a scalar multiple of x if
and only if # is a multiple of 180°.
Since tr A equals the sum of the eigenvalues the result follows by solving

2": A= Zah’
=1 i=1

for Aj.
a;n—2A 812

2
=A== —asga
a2) azz — A A~ (a11 + a22)A + (611623 — 621012)

= A2 — (tr A)A +det(A)
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14. A(A™x) = A™H1x = A™(Ax) = A™(Ax) = A(A™x)

15. If A — Aol has rank k then N(A — Aol) will have dimension n — k.

16. The subspace spanned by x and Ax will have dimension 1 if and only if x

17.

18.

19.

20.

21,

and Ax are linearly dependent and x # 0. The vectors x and Ax will be
linearly dependent if and only if Ax = Ax for some scalar A.

(a) If « =a+ b and B =c + di, then

atB=(at+c)+(d+d)i=(a+c)—(db+d)
and

a+B8=(a—-bi)+(c—di)=(a+c)— (b+d)i
Therefore o + 8 =@ + B.

Next we show that the conjugate of the product of two numbers is the
product of the conjugates.

af = (ac — bd) + (ad + bc)i = (ac — bd) — (ad + be)i
ap = (a — bi)(c — di) = (ac — bd) — (ad + be)i

Therefore aff = ap. .
(b) If A € R™*" and B € R**7, then the (i, j) entry of AB is given by

@i1b1; + Gizboj + - - + @inbn; = Tigby; + Bizba; + -+ + Bindnj

The expression on the right is the (i,3) entry of A B. Therefore
AB=AB
If x = ¢1x; + ¢ox2 + -+ + ¢ X, is an element of S, then
Ax = (aA1)x1 + (c2Ag)x2 + -+ + (er Ar )%,

Thus Ax is also an element of S.

Since x # 0 and § is nonsingular it follows that Sx # 0. If B = S~!AS,
then AS = SB and it follows that

A(Sx) = (AS)x = SBx = S(Ax) = A(Sx)

Therefore Sx is an eigenvector of A belonging to A.

If x is an eigenvector of A belonging to the eigenvalue A and x is also an
eigenvector of B corresponding to the eigenvalue y, then

(aA + BB)x = aAx + BBx = aldx + fux = (aX + fu)x

Therefore x is an eigenvector of @A + 8B belonging to aX + fu.
If X # 0 and x is an eigenvector belonging to A, then

Ax = Xx
1
x—XAx

Since Ax is in R(A) it follows that 3 Ax is in R(A).




Section 1 89

22. If

23.

24.

25,

26.

27.

A=) uul + nuul +.- 4 2 u,u?
thenfori=1,...,n

Au; = /\lulufu; + Agugugu; +:-- 4 /\nu,,u:u,-

Since uTu; = 0 unless j = i, it follows that
Au; = A;u,—u?u,- = )\,-u,-

and hence ); is an eigenvalue of A with eigenvector u;. The matrix A is sym-
metric since each A;u;u/ is symmetric and any sum of symmetric matrices
is symmetric.

If the columns of A each add up to a fixed constant § then the row vectors of
A—4I all add up to (0,0,...,0). Thus the row vectors of A—4I are linearly
dependent and hence A — 47 is singular. Therefore & is an eigenvalue of A.

Since y is an eigenvector of AT belonging to A, it follows that
xTATy = AxTy
The expression xTATy can also be written in the form (Ax)Ty. Since x is
an eigenvector of A belonging to A;, it follows that
x"ATy = (Ax)Ty = axTy
Therefore
(A= A)xTy=0
and since Ay # A2, the vectors x and y must be orthogonal.
(a) If A is a nonzero eigenvalue of AB with eigenvector x, then let y = Bx.
Since
Ay=ABx=Xx#0
it follows that y # 0 and
BAy = BA(Bx) = B(ABx) = BAx = )y
Thus ) is also an eigenvalue of BA with eigenvector y.
(b) If X =0 is an eigenvalue of AB, then AB must be singular. Since
det(BA) = det(B)det(A) = det(A) det(B) = det(AB) =0
it follows that BA is also singular. Therefore A = 0 is an eigenvalue of
BA.

If AB—- BA = I, then BA = AB — I. If the eigenvalues of AB are
A1, A2,..., A, then it follows from Exercise 8 that the eigenvalues of BA
are A\; — 1, As — 1,..., A, — 1. This contradicts the result proved in Exercise
25 that AB and BA have the same eigenvalues.

(a) If X is a root of p(}), then
AP =an N 4t e +ao
Thus if x = (A7}, A772,...,,,1)7, then
Cx=(ANAY 20T = ax

T
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and hence X; is an eigenvalue of C with eigenvector x.
(b) If Ay,..., A are the roots of p(}), then
p(A) = (=1)" (A= A)-- (A= An)

If A1,..., A, are all distinct then by part (a) they are the eigenvalues of
C. Since the characteristic polynomial of C has lead coefficient (—1)"
and roots Ag,..., Ay, it must equal p(A).

28. Let
Qm Gm-1 e e, ap
- ves 0 0
Do, (A) =
0 0 . 1 -2

It can be proved by induction on m that
det(Dm(N) = (=1)™(@mA™ + @1 A™ " + + -+ + a1 X + 60)

If det(C — ) is expanded by cofactors along the first column one obtains
det(C — M) = (an—1 — A)}{=A)""! - det(Dn—2)

= (=1)*(A" = @ A" ) = (= 1)""H(@n2A"" 2+ -+ + a1 X + ap)

= (D" = @no1 A7) = (@n—2A""2 + -+ + a1A + ao)]

= (—1)"A" = @n A" a2 A" — i — g A — ag)

= p(})

SECTION 2
3. (@) If

Y(t) = aettx; + € %y + -+ + coe?ntx,
then
Yo=Y(0) =cixa + coxa+ -+« + euXy,
(b) It follows from part (a) that
Y, = Xe

If x;,...,x, are linearly independent then X is nonsingular and we can
solve for ¢

c=X"1Y,
7. It follows from the initial condition that
z1(0) = a10 =2
z5(0) = a0 =2
and hence
ay =ay=2/a
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Substituting for z, and z; in the system

:r,’l’ = —2x + zH
Ty = Ty — 219
yields
—a,0%sinot = —2a, sinot + a; sinot

—az0’sinot = a;sinot — 2a, sinot
Replacing a, and e, by 2/0 we get
ot =1

Using either 0 = —1, a; = ay = -2 or 0 = 1, @; = a3 = 2 we obtain the
solution

x:1(t) = 2sint

z2(t) = 2sint

9. miy! = ki — k2(y2 — 91) — mug

mayy = ka(y2 ~ ) — mag
11. If

y™ =ay+ a1y +-- +au1y"Y
and we set

I

n=v,m=y=¢,B=1=9v".. =t =¥

then the nth order equation can be written as a system of first order equa-
tions of the form Y’ = AY where

0 gy 0 -.- 0
0 0 ¥z - 0
A= ]| :
0 0 0 e YUn
ao (91 a2 Gn-1

SECTION 3

1. The factorization X DX ™! is not unique. However the diagonal elements of
D must be eigenvalues of A and if A; is the ith diagonal element of D, then
x; must be an eigenvector belonging to A;
(a) det(A—XI) = A?~1 and hence the eigenvalues are A; = 1 and Ay = -1.
x; = (1, 1)T and x3 = (~1, 1) are eigenvectors belonging to A; and
Az, respectively. Setting

1 -1 (1 o
X=[1 1] and D-[0_1]
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we have

_ a1 =1 1 0 1/2 1/2
A=XDx "[1 1][0-—1][—1/2 1/2
(b) The eigenvalues are A\; = 2, Ay = 1. If we take x; = (-2, 1)T and ;
xg = (-3, 2)7, then 4

N a_ [ -2 -3 2 0 -2 -3
A=XDX ‘[ 1 2][0 1][ 1 2]

(¢) A\ =0, Ay = —2. If we take x; = (4, 1)T and x; = (2, 1)T, then

A=XDX“=[11 f] [3 —(2)] [-ig _;]

(d) The eigenvalues are the diagonal entries of A. The eigenvectors corre-
sponding to A; = 2 are all multiples of (1, 0, 0)7. The eigenvectors
belonging to A2 = 1 are all multiples of (2, —1, 0) and the eigenvectars
corresponding to A3 = —1 are multiples (1, —3, 3)T.

i

1 2 1 2 0 0 1 2 3
A=XDX"'=]10 -1 -3 01 o0 0 -1 -1
0 o0 3 0 0 -1 0 0 3

(€ M=12=2)=-2
x; = (3, 1, 2)T, x2 = (0, 3, 1)T x3 = (0, -1, 1)T

(3 0 0] 1 0 0
A=XDX1=}1 3 -1 % % %
2 -5 -1 %

(f) /\1 = 2’ Az = Aa = 0’ Xy = (1! 23 3) )y X2 = (1, 0, 1) , X3 = ( 2, 1, O)T i

(1 1 -2Yy(2 0 O 3 3
A=XDX'=|2 0 1 0 0 0 -3 -3 3
(31 0)Jlo o o 1 1
2. A= XDX! then A6 XDSx-L.

(a)D6=[1 _0‘ =

ma= (2] (20) (77 2] (2 )
6
(0 9) (e ) - )

4
1
(1 2 1 2 0 0Y°(1 2 53
(@ A°=] 0 -1 —3][ 1 0][0—1 -1]
0 0

0 0 1/3

3
2
4
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Since D? = D it follows that
A’=XD*X'=XDX'=A

1 1 -1 9 0 0 1 -1 0
®A={0 1 -1 0 4 0 0 1 1
0 0 1 0 0 1 0 0 1

1 1 -1Y(3 0 O 1 -1 0
B=XDYV2Xx"1 =0 1 -1 0 2 0 0 1 1
0 0o 1)Jlo o0 1 o 0 1
3 -1 1)
=]0 2 1
0 0 1)
5. If X diagonalizes A, then
X 'AX=D

where D is a diagonal matrix. It follows that
D=DT = XTAT(X )T =Y 1ATY

Therefore Y diagonalizes A”.

8. If A= ADA~' where D is a diagonal matrix whose diagonal elements are
all either 1 or —1, then D™! = D and

Al'=XD'X'=XDX'=4A

7. If x is an eigenvector belonging to the eigenvalue a, then

HRAIEEH

zy=23=0

and it follows that

Thus the eigenspace corresponding to Ay = Ay = a has dimension 1 and is
spanned by (1, 0, 0)7. The matrix is defective since a is a double eigenvalue
and its eigenspace only has dimension 1.

8. (a) The characteristic polynomial of the matrix factors as follows.
p(A) = A2 - A)(a - X)

Thus the only way that the matrix can have a multiple eigenvalue is if
a=0or a =2 Inthe case a = 0, we have that A = 0 is an eigenvalue
of multiplicity 2 and the corresponding eigenspace is spanned by x; =
(-1,1,0)7 and x; = es. Since A = 0 has two linearly independent
eigenvectors, the matrix is not defective. Similarly in the case a@ = 2 the
matrix will not be defective since the eigenvalue A = 2 possesses two
linearly independent eigenvectors x; = (1,1,0)7 and x; = e3.
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If A— M\ has rank 1, then
dmN(A-A)=4-1=3
Since A has multiplicity 3 the matrix is not defective.

10. (a) The proof is by induction. In the case m = 1,

11.

12.

13.

Ax = Xﬂ:a,-Ax.» = Xn:a,-,\,-xi

=1 =1

n
Akx = Za.-z\fx,-
t=1
then

ARl = A(ARX) = A(Y eadixi) = Y aidkAx = Y et
i=1 i=1

i=1

(b) If Ay =1, then

n
A™x = ox; + Zai,\;”x‘
=2
Since 0 < X; < 1 fori=2,...,n, it follows that A* - 0 as m -3 co.
Hence

lim A™x = a1x;
m—o0

If A is an n X n matrix and A is an eigenvalue of multiplicity n then A is
diagonalizable if and only if

dmN(A-AM)=n

or equivalently
rank(A — M) =0
The only way the rank can be 0 is if
A-M =0
A=M

If A is nilpotent, then 0 is an eigenvalue of multiplicity n. It follows from
Exercise 11 that A is diagonalizable if and only if A = O.

Let A be a diagonalizable n x n matrix. Let A1, Ag,...,Ax be the nonzero
eigenvalues of A. The remaining eigenvalues are all 0.

Ml = A2 == An =0
If x; is an eigenvector belonging to A, then

Ax; = Aix; i=1,....k
Ax; =0 i=k+1,...,n



