HOMEWORK \#8

Chapter

SECTION 1

2. If A is triangular then $A-a_{i i} I$ will be a triangular matrix with a zero entry in the (i, i) position. Since the determinant of a triangular matrix is the product of its diagonal elements it follows that

$$
\operatorname{det}\left(A-a_{i i} I\right)=0
$$

Thus the eigenvalues of A are $a_{11}, a_{22}, \ldots, a_{n n}$.
3. A is singular if and only if $\operatorname{det}(A)=0$. The scalar 0 is an eigenvalue if and only if

$$
\operatorname{det}(A-0 I)=\operatorname{det}(A)=0
$$

Thus A is singular if and only if one of its eigenvalues is 0 .
4. If \boldsymbol{A} is a nonsingular matrix and λ is an eigenvalue of A, then there exists a nonzero vector \mathbf{x} such that

$$
\begin{aligned}
A \mathbf{x} & =\lambda \mathbf{x} \\
A^{-1} A \mathbf{x} & =\lambda A^{-1} \mathbf{x}
\end{aligned}
$$

It follows from Exercise 3 that $\lambda \neq 0$. Therefore

$$
A^{-1} \mathbf{x}=\frac{1}{\lambda} \mathbf{x}
$$

and hence $1 / \lambda$ is an eigenvalue of A^{-1}.
5. In the case where $m=1, \lambda^{1}=\lambda$ is an eigenvalue of A with eigenvector \mathbf{x}. Suppose λ^{k} is an eigenvalue of A^{k} and \mathbf{x} is an eigenvector belonging to λ^{k}.

$$
A^{k+1} \mathbf{x}=A\left(A^{k} \mathbf{x}\right)=A\left(\lambda^{k} \mathbf{x}\right)=\lambda^{k} A \mathbf{x}=\lambda^{k+1} \mathbf{x}
$$

Thus λ^{k+1} is an eigenvalue of A^{k+1} and x is an eigenvector belonging to λ^{k+1}. This completes the induction proof.
6. If A is idempotent and λ is an eigenvalue of A with eigenvector x , then

$$
\begin{aligned}
A \mathbf{x} & =\lambda \mathbf{x} \\
A^{2} \mathbf{x} & =\lambda A \mathbf{x}=\lambda^{2} \mathbf{x}
\end{aligned}
$$

and

$$
A^{2} \mathrm{x}=A \mathbf{x}=\lambda \mathbf{x}
$$

Therefore

$$
\left(\lambda^{2}-\lambda\right) \mathbf{x}=\mathbf{0}
$$

Since $\mathbf{x} \neq 0$ it follows that

$$
\begin{aligned}
& \lambda^{2}-\lambda=0 \\
& \lambda=0 \text { or } \lambda=1
\end{aligned}
$$

7. If λ is an eigenvalue of A, then λ^{k} is an eigenvalue of A^{k} (Exercise 5). If $A^{k}=O$, then all of its eigenvalues are 0 . Thus $\lambda^{k}=0$ and hence $\lambda=0$.
8. $\operatorname{det}(A-\lambda I)=\operatorname{det}\left((A-\lambda I)^{T}\right)=\operatorname{det}\left(A^{T}-\lambda I\right)$. Thus A and A^{T} have the same characteristic polynomials and consequently must have the same eigenvalues. The eigenspaces however will not be the same. For example if

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

then the eigenvalues of A and A^{T} are both given by

$$
\lambda_{1}=\lambda_{2}=1
$$

The eigenspace of A corresponding to $\lambda=1$ is spanned by $(1,0)^{T}$ while the eigenspace of A^{T} is spanned by $(0,1)^{T}$. Exercise 24 shows how the eigenvectors of A and A^{T} are related.
10. $\operatorname{det}(A-\lambda I)=\lambda^{2}-(2 \cos \theta) \lambda+1$. The discriminant will be negative unless θ is a multiple of π. The matrix A has the effect of rotating a real vector x about the origin by an angle of θ. Thus $A x$ will be a scalar multiple of x if and only if θ is a multiple of 180°.
12. Since $\operatorname{tr} A$ equals the sum of the eigenvalues the result follows by solving

$$
\sum_{i=1}^{n} \lambda_{i}=\sum_{i=1}^{n} a_{i i}
$$

for λ_{j}.
13. $\left|\begin{array}{cc}a_{11}-\lambda & a_{12} \\ a_{21} & a_{22}-\lambda\end{array}\right|=\lambda^{2}-\left(a_{11}+a_{22}\right) \lambda+\left(a_{11} a_{22}-a_{21} a_{12}\right)$
$=\lambda^{2}-(\operatorname{tr} A) \lambda+\operatorname{det}(A)$
14. $A\left(A^{m} \mathbf{x}\right)=A^{m+1} \mathbf{x}=A^{m}(A \mathbf{x})=A^{m}(\lambda \mathbf{x})=\lambda\left(A^{m} \mathbf{x}\right)$
15. If $A-\lambda_{0} I$ has rank k then $N\left(A-\lambda_{0} I\right)$ will have dimension $n-k$.
16. The subspace spanned by x and $A x$ will have dimension 1 if and only if x and $A x$ are linearly dependent and $x \neq 0$. The vectors x and $A x$ will be linearly dependent if and only if $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ.
17. (a) If $\alpha=a+b i$ and $\beta=c+d i$, then

$$
\overline{\alpha+\beta}=\overline{(a+c)+(b+d) i}=(a+c)-(b+d) i
$$

and

$$
\bar{\alpha}+\bar{\beta}=(a-b i)+(c-d i)=(a+c)-(b+d) i
$$

Therefore $\overline{\alpha+\bar{\beta}}=\bar{\alpha}+\overline{\boldsymbol{\beta}}$.
Next we show that the conjugate of the product of two numbers is the product of the conjugates.

$$
\begin{gathered}
\overline{\alpha \beta}=\overline{(a c-b d)+(a d+b c) i}=(a c-b d)-(a d+b c) i \\
\bar{\alpha} \bar{\beta}=(a-b i)(c-d i)=(a c-b d)-(a d+b c) i
\end{gathered}
$$

Therefore $\overline{\alpha \boldsymbol{\beta}}=\bar{\alpha} \overline{\boldsymbol{\beta}}$.
(b) If $A \in R^{m \times n}$ and $B \in R^{n \times r}$, then the (i,j) entry of $\overline{A B}$ is given by

$$
\overline{a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}}=\overline{a_{i 1}} \overline{b_{1 j}}+\overline{a_{i 2}} \overline{b_{2 j}}+\cdots+\overline{a_{i n}} \overline{b_{n j}}
$$

The expression on the right is the (i, j) entry of $\bar{A} \bar{B}$. Therefore

$$
\overline{A B}=\bar{A} \bar{B}
$$

18. If $x=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{T} x_{r}$ is an element of S, then

$$
A \mathbf{x}=\left(c_{1} \lambda_{1}\right) \mathbf{x}_{1}+\left(c_{2} \lambda_{2}\right) \mathbf{x}_{2}+\cdots+\left(c_{r} \lambda_{r}\right) \mathbf{x}_{r}
$$

Thus $A x$ is also an element of S.
19. Since $\mathbf{x} \neq 0$ and S is nonsingular it follows that $S x \neq 0$. If $B=S^{-1} A S$, then $A S=S B$ and it follows that

$$
A(S \mathbf{x})=(A S) \mathbf{x}=S B \mathbf{x}=S(\lambda \mathbf{x})=\lambda(S \mathbf{x})
$$

Therefore $S \mathbf{x}$ is an eigenvector of A belonging to λ.
20. If x is an eigenvector of A belonging to the eigenvalue λ and x is also an eigenvector of B corresponding to the eigenvalue μ, then

$$
(\alpha A+\beta B) \mathbf{x}=\alpha A \mathbf{x}+\beta B \mathbf{x}=\alpha \lambda \mathbf{x}+\beta \mu \mathbf{x}=(\alpha \lambda+\beta \mu) \mathbf{x}
$$

Therefore x is an eigenvector of $\alpha A+\beta B$ belonging to $\alpha \lambda+\beta \mu$.
21. If $\lambda \neq 0$ and x is an eigenvector belonging to λ, then

$$
\begin{aligned}
A \mathbf{x} & =\lambda \mathbf{x} \\
\mathbf{x} & =\frac{1}{\lambda} A \mathbf{x}
\end{aligned}
$$

Since $A \mathrm{x}$ is in $R(A)$ it follows that $\frac{1}{\lambda} A \mathrm{x}$ is in $R(A)$.
22. If

$$
A=\lambda_{1} \mathbf{u}_{1} \mathbf{u}_{1}^{T}+\lambda_{2} \mathbf{u}_{2} \mathbf{u}_{2}^{T}+\cdots+\lambda_{n} \mathbf{u}_{n} \mathbf{u}_{n}^{T}
$$

then for $i=1, \ldots, n$

$$
A \mathbf{u}_{i}=\lambda_{1} \mathbf{u}_{1} \mathbf{u}_{1}^{T} \mathbf{u}_{i}+\lambda_{2} \mathbf{u}_{2} \mathbf{u}_{2}^{T} \mathbf{u}_{i}+\cdots+\lambda_{n} \mathbf{u}_{n} \mathbf{u}_{n}^{T} \mathbf{u}_{i}
$$

Since $\mathbf{u}_{j}^{T} \mathbf{u}_{i}=0$ unless $j=i$, it follows that

$$
A \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{T} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}
$$

and hence λ_{i} is an eigenvalue of A with eigenvector \mathbf{u}_{i}. The matrix A is symmetric since each $\lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{T}$ is symmetric and any sum of symmetric matrices is symmetric.
23. If the columns of A each add up to a fixed constant δ then the row vectors of $A-\delta I$ all add up to $(0,0, \ldots, 0)$. Thus the row vectors of $A-\delta I$ are linearly dependent and hence $A-\delta I$ is singular. Therefore δ is an eigenvalue of A.
24. Since y is an eigenvector of A^{T} belonging to λ_{2} it follows that

$$
\mathbf{x}^{T} A^{T} \mathbf{y}=\lambda_{2} \mathbf{x}^{T} \mathbf{y}
$$

The expression $x^{T} A^{T} y$ can also be written in the form $(A x)^{T} y$. Since x is an eigenvector of A belonging to λ_{1}, it follows that

$$
\mathbf{x}^{T} A^{T} \mathbf{y}=(A x)^{T} \mathbf{y}=\lambda_{1} x^{T} \mathbf{y}
$$

Therefore

$$
\left(\lambda_{1}-\lambda_{2}\right) \mathbf{x}^{T} \mathbf{y}=0
$$

and since $\lambda_{1} \neq \lambda_{2}$, the vectors \mathbf{x} and \mathbf{y} must be orthogonal.
25. (a) If λ is a nonzero eigenvalue of $A B$ with eigenvector \mathbf{x}, then let $\mathbf{y}=B \mathbf{x}$. Since

$$
A \mathbf{y}=A B \mathbf{x}=\lambda \mathbf{x} \neq \mathbf{0}
$$

it follows that $y \neq 0$ and

$$
B A \mathbf{y}=B A(B \mathbf{x})=B(A B \mathbf{x})=B \lambda \mathbf{x}=\lambda \mathbf{y}
$$

Thus λ is also an eigenvalue of $B A$ with eigenvector y.
(b) If $\lambda=0$ is an eigenvalue of $A B$, then $A B$ must be singular. Since

$$
\operatorname{det}(B A)=\operatorname{det}(B) \operatorname{det}(A)=\operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(A B)=0
$$

it follows that $B A$ is also singular. Therefore $\lambda=0$ is an eigenvalue of $B A$.
26. If $A B-B A=I$, then $B A=A B-I$. If the eigenvalues of $A B$ are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, then it follows from Exercise 8 that the eigenvalues of $B A$ are $\lambda_{1}-1, \lambda_{2}-1, \ldots, \lambda_{n}-1$. This contradicts the result proved in Exercise 25 that $A B$ and $B A$ have the same eigenvalues.
27. (a) If λ_{i} is a root of $p(\lambda)$, then

$$
\lambda_{i}^{n}=a_{n-1} \lambda_{i}^{n-1}+\cdots+a_{1} \lambda_{i}+a_{0}
$$

Thus if $\mathbf{x}=\left(\lambda_{i}^{n-1}, \lambda_{i}^{n-2}, \ldots, \lambda_{i}, 1\right)^{T}$, then

$$
C x=\left(\lambda_{i}^{n}, \lambda_{i}^{n-1}, \ldots, \lambda_{i}^{2}, \lambda_{i}\right)^{T}=\lambda_{i} x
$$

and hence λ_{i} is an eigenvalue of C with eigenvector \mathbf{x}.
(b) If $\lambda_{1}, \ldots, \lambda_{n}$ are the roots of $p(\lambda)$, then

$$
p(\lambda)=(-1)^{n}\left(\lambda-\lambda_{1}\right) \cdots\left(\lambda-\lambda_{n}\right)
$$

If $\lambda_{1}, \ldots, \lambda_{n}$ are all distinct then by part (a) they are the eigenvalues of C. Since the characteristic polynomial of C has lead coefficient $(-1)^{n}$ and roots $\lambda_{1}, \ldots, \lambda_{n}$, it must equal $p(\lambda)$.
28. Let

$$
D_{m}(\lambda)=\left(\begin{array}{ccccc}
a_{m} & a_{m-1} & \cdots & a_{1} & a_{0} \\
1 & -\lambda & \cdots & 0 & 0 \\
\vdots & & & & \\
0 & 0 & \cdots & 1 & -\lambda
\end{array}\right)
$$

It can be proved by induction on m that

$$
\operatorname{det}\left(D_{m}(\lambda)\right)=(-1)^{m}\left(a_{m} \lambda^{m}+a_{m-1} \lambda^{m-1}+\cdots+a_{1} \lambda+a_{0}\right)
$$

If $\operatorname{det}(C-\lambda I)$ is expanded by cofactors along the first column one obtains

$$
\begin{aligned}
\operatorname{det}(C-\lambda I) & =\left(a_{n-1}-\lambda\right)(-\lambda)^{n-1}-\operatorname{det}\left(D_{n-2}\right) \\
& =(-1)^{n}\left(\lambda^{n}-a_{n-1} \lambda^{n-1}\right)-(-1)^{n-2}\left(a_{n-2} \lambda^{n-2}+\cdots+a_{1} \lambda+a_{0}\right) \\
& =(-1)^{n}\left[\left(\lambda^{n}-a_{n-1} \lambda^{n-1}\right)-\left(a_{n-2} \lambda^{n-2}+\cdots+a_{1} \lambda+a_{0}\right)\right] \\
& =(-1)^{n}\left[\lambda^{n}-a_{n-1} \lambda^{n-1}-a_{n-2} \lambda^{n-2}-\cdots-a_{1} \lambda-a_{0}\right] \\
& =p(\lambda)
\end{aligned}
$$

SECTION 2

3. (a) If

$$
\mathbf{Y}(t)=c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+\cdots+c_{n} e^{\lambda_{n} t} \mathbf{x}_{n}
$$

then

$$
\mathbf{Y}_{0}=\mathbf{Y}(0)=c_{1} \mathbf{x}_{2}+c_{2} \mathbf{x}_{2}+\cdots+c_{n} \mathbf{x}_{n}
$$

(b) It follows from part (a) that

$$
\mathbf{Y}_{0}=X \mathbf{c}
$$

If $\mathbf{x}_{1}, \ldots, x_{n}$ are linearly independent then X is nonsingular and we can solve for \mathbf{c}

$$
\mathbf{c}=X^{-1} \mathbf{Y}_{0}
$$

7. It follows from the initial condition that

$$
\begin{aligned}
& x_{1}^{\prime}(0)=a_{1} \sigma=2 \\
& x_{2}^{\prime}(0)=a_{2} \sigma=2
\end{aligned}
$$

and hence

$$
a_{1}=a_{2}=2 / \sigma
$$

Substituting for x_{1} and x_{2} in the system

$$
\begin{aligned}
& x_{1}^{\prime \prime}=-2 x_{1}+x_{2} \\
& x_{2}^{\prime \prime}=x_{1}-2 x_{2}
\end{aligned}
$$

yields

$$
\begin{aligned}
& -a_{1} \sigma^{2} \sin \sigma t=-2 a_{1} \sin \sigma t+a_{2} \sin \sigma t \\
& -a_{2} \sigma^{2} \sin \sigma t=a_{1} \sin \sigma t-2 a_{2} \sin \sigma t
\end{aligned}
$$

Replacing a_{1} and a_{2} by $2 / \sigma$ we get

$$
\sigma^{2}=1
$$

Using either $\sigma=-1, a_{1}=a_{2}=-2$ or $\sigma=1, a_{1}=a_{2}=2$ we obtain the solution

$$
\begin{aligned}
& x_{1}(t)=2 \sin t \\
& x_{2}(t)=2 \sin t
\end{aligned}
$$

9. $m_{1} y_{1}^{\prime \prime}=k_{1} y_{1}-k_{2}\left(y_{2}-y_{1}\right)-m_{1} g$

$$
m_{2} y_{2}^{\prime \prime}=k_{2}\left(y_{2}-y_{1}\right)-m_{2} g
$$

11. If

$$
y^{(n)}=a_{0} y+a_{1} y^{\prime}+\cdots+a_{n-1} y^{(n-1)}
$$

and we set

$$
y_{1}=y, y_{2}=y_{1}^{\prime}=y^{\prime \prime}, y_{3}=y_{2}^{\prime}=y^{\prime \prime \prime}, \ldots, y_{n}=y_{n-1}^{\prime}=y^{n}
$$

then the nth order equation can be written as a system of first order equations of the form $\mathbf{Y}^{\prime}=A \mathbf{Y}$ where

$$
A=\left(\begin{array}{ccccc}
0 & y_{2} & 0 & \cdots & 0 \\
0 & 0 & y_{3} & \cdots & 0 \\
\vdots & & & & \\
0 & 0 & 0 & \cdots & y_{n} \\
a_{0} & a_{1} & a_{2} & \cdots & a_{n-1}
\end{array}\right)
$$

SECTION 3

1. The factorization $X D X^{-1}$ is not unique. However the diagonal elements of D must be eigenvalues of A and if λ_{i} is the i th diagonal element of D, then \mathbf{x}_{i} must be an eigenvector belonging to λ_{i}
(a) $\operatorname{det}(A-\lambda I)=\lambda^{2}-1$ and hence the eigenvalues are $\lambda_{1}=1$ and $\lambda_{2}=-1$. $\mathbf{x}_{1}=(1,1)^{T}$ and $\mathbf{x}_{2}=(-1,1)^{T}$ are eigenvectors belonging to λ_{1} and λ_{2}, respectively. Setting

$$
X=\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

we have

$$
A=X D X^{-1}=\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{rr}
1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right)
$$

(b) The eigenvalues are $\lambda_{1}=2, \lambda_{2}=1$. If we take $x_{1}=(-2,1)^{T}$ and $\mathrm{x}_{2}=(-3,2)^{T}$, then

$$
A=X D X^{-1}=\left(\begin{array}{rr}
-2 & -3 \\
1 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{rr}
-2 & -3 \\
1 & 2
\end{array}\right)
$$

(c) $\lambda_{1}=0, \lambda_{2}=-2$. If we take $x_{1}=(4,1)^{T}$ and $x_{2}=(2,1)^{T}$, then

$$
A=X D X^{-1}=\left(\begin{array}{ll}
4 & 2 \\
1 & 1
\end{array}\right)\left(\begin{array}{rr}
0 & 0 \\
0 & -2
\end{array}\right)\left(\begin{array}{rr}
1 / 2 & -1 \\
-1 / 2 & 2
\end{array}\right)
$$

(d) The eigenvalues are the diagonal entries of A. The eigenvectors corresponding to $\lambda_{1}=2$ are all multiples of $(1,0,0)^{T}$. The eigenvectors belonging to $\lambda_{2}=1$ are all multiples of $(2,-1,0)$ and the eigenvectors corresponding to $\lambda_{3}=-1$ are multiples $(1,-3,3)^{T}$.

$$
A=X D X^{-1}=\left(\begin{array}{rrr}
1 & 2 & 1 \\
0 & -1 & -3 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{rrr}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{rrr}
1 & 2 & \frac{5}{3} \\
0 & -1 & -1 \\
0 & 0 & \frac{1}{3}
\end{array}\right)
$$

(e) $\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=-2$

$$
x_{1}=(3,1,2)^{T}, x_{2}=(0,3,1)^{T}, x_{3}=(0,-1,1)^{T}
$$

$$
A=X D X^{-1}=\left(\begin{array}{rrr}
3 & 0 & 0 \\
1 & 3 & -1 \\
2 & 1 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -2
\end{array}\right)\left(\begin{array}{rrr}
\frac{1}{3} & 0 & 0 \\
-\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
-\frac{5}{12} & -\frac{1}{4} & \frac{3}{4}
\end{array}\right)
$$

(f) $\lambda_{1}=2, \lambda_{2}=\lambda_{3}=0, x_{1}=(1,2,3)^{T}, x_{2}=(1,0,1)^{T}, x_{3}=(-2,1,0)^{T}$

$$
A=X D X^{-1}=\left(\begin{array}{rrr}
1 & 1 & -2 \\
2 & 0 & 1 \\
3 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{rrr}
\frac{1}{2} & 1 & -\frac{1}{2} \\
-\frac{3}{2} & -3 & \frac{5}{2} \\
-1 & -1 & 1
\end{array}\right)
$$

2. If $A=X D X^{-1}$, then $A^{6}=X D^{6} X^{-1}$.
(a) $D^{6}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)^{6}=I$

$$
A^{6}=X D^{6} X^{-1}=X X^{-1}=I
$$

(b) $A^{6}=\left(\begin{array}{rr}-2 & -3 \\ 1 & 2\end{array}\right)\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)^{6}\left(\begin{array}{rr}-2 & -3 \\ 1 & 2\end{array}\right)=\left(\begin{array}{rr}253 & 378 \\ -126 & -190\end{array}\right)$
(c) $A^{6}=\left(\begin{array}{ll}4 & 2 \\ 1 & 1\end{array}\right)\left(\begin{array}{rr}0 & 0 \\ 0 & -2\end{array}\right)^{6}\left(\begin{array}{rr}1 / 2 & -1 \\ -1 / 2 & 2\end{array}\right)=\left(\begin{array}{ll}-64 & 256 \\ -32 & 128\end{array}\right)$
(d) $A^{6}=\left(\begin{array}{rrr}1 & 2 & 1 \\ 0 & -1 & -3 \\ 0 & 0 & 3\end{array}\right)\left(\begin{array}{rrr}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)^{6}\left(\begin{array}{rrr}1 & 2 & 5 / 3 \\ 0 & -1 & -1 \\ 0 & 0 & 1 / 3\end{array}\right)$

Since $D^{2}=D$ it follows that

$$
\begin{aligned}
& A^{2}=X D^{2} X^{-1}=X D X^{-1}=A \\
& \text { (b) } \begin{aligned}
A & =\left(\begin{array}{lll}
1 & 1 & -1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
9 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \\
B & =X D^{1 / 2} X^{-1}
\end{aligned}=\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \\
&=\left(\begin{array}{rrr}
3 & -1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

5. If X diagonalizes A, then

$$
X^{-1} A X=D
$$

where D is a diagonal matrix. It follows that

$$
D=D^{T}=X^{T} A^{T}\left(X^{-1}\right)^{T}=Y^{-1} A^{T} Y
$$

Therefore Y diagonalizes A^{T}.
6. If $A=A D A^{-1}$ where D is a diagonal matrix whose diagonal elements are all either 1 or -1 , then $D^{-1}=D$ and

$$
A^{-1}=X D^{-1} X^{-1}=X D X^{-1}=A
$$

7. If \mathbf{x} is an eigenvector belonging to the eigenvalue a, then

$$
\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & b-a
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

and it follows that

$$
x_{2}=x_{3}=0
$$

Thus the eigenspace corresponding to $\lambda_{1}=\lambda_{2}=a$ has dimension 1 and is spanned by $(1,0,0)^{T}$. The matrix is defective since a is a double eigenvalue and its eigenspace only has dimension 1.
8. (a) The characteristic polynomial of the matrix factors as follows.

$$
p(\lambda)=\lambda(2-\lambda)(\alpha-\lambda)
$$

Thus the only way that the matrix can have a multiple eigenvalue is if $\alpha=0$ or $\alpha=2$. In the case $\alpha=0$, we have that $\lambda=0$ is an eigenvalue of multiplicity 2 and the corresponding eigenspace is spanned by $\mathbf{x}_{1}=$ $(-1,1,0)^{T}$ and $x_{2}=e_{3}$. Since $\lambda=0$ has two linearly independent eigenvectors, the matrix is not defective. Similarly in the case $\alpha=2$ the matrix will not be defective since the eigenvalue $\lambda=2$ possesses two linearly independent eigenvectors $\mathbf{x}_{1}=(1,1,0)^{T}$ and $\mathbf{x}_{2}=\mathbf{e}_{3}$.
9. If $A-\lambda I$ has rank 1 , then

$$
\operatorname{dim} N(A-\lambda I)=4-1=3
$$

Since λ has multiplicity 3 the matrix is not defective.
10. (a) The proof is by induction. In the case $m=1$,

$$
A x=\sum_{i=1}^{n} \alpha_{i} A x_{i}=\sum_{i=1}^{n} \alpha_{i} \lambda_{i} x_{i}
$$

If

$$
A^{k} \mathbf{x}=\sum_{i=1}^{n} \boldsymbol{\alpha}_{i} \lambda_{i}^{k} \mathbf{x}_{i}
$$

then

$$
A^{k+1} \mathrm{x}=A\left(A^{k} \mathbf{x}\right)=A\left(\sum_{i=1}^{n} \alpha_{i} \lambda_{i}^{k} \mathrm{x}_{i}\right)=\sum_{i=1}^{n} \alpha_{i} \lambda_{i}^{k} A \mathrm{x}_{i}=\sum_{i=1}^{n} \alpha_{i} \lambda_{i}^{k+1} \mathrm{x}_{i}
$$

(b) If $\lambda_{1}=1$, then

$$
A^{m} \mathbf{x}=\alpha_{1} \mathbf{x}_{1}+\sum_{i=2}^{n} \alpha_{i} \lambda_{i}^{m} \mathbf{x}_{i}
$$

Since $0<\lambda_{i}<1$ for $i=2, \ldots, n$, it follows that $\lambda_{i}^{m} \rightarrow 0$ as $m \rightarrow \infty$. Hence

$$
\lim _{m \rightarrow \infty} A^{m} \mathbf{x}=\alpha_{1} \mathbf{x}_{1}
$$

11. If A is an $n \times n$ matrix and λ is an eigenvalue of multiplicity n then A is diagonalizable if and only if

$$
\operatorname{dim} N(A-\lambda I)=n
$$

or equivalently

$$
\operatorname{rank}(A-\lambda I)=0
$$

The only way the rank can be 0 is if

$$
\begin{aligned}
A-\lambda I & =O \\
A & =\lambda I
\end{aligned}
$$

12. If A is nilpotent, then 0 is an eigenvalue of multiplicity n. It follows from Exercise 11 that A is diagonalizable if and only if $A=O$.
13. Let A be a diagonalizable $n \times n$ matrix. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the nonzero eigenvalues of A. The remaining eigenvalues are all 0 .

$$
\lambda_{k+1}=\lambda_{k+2}=\cdots=\lambda_{n}=0
$$

If x_{i} is an eigenvector belonging to λ_{i}, then

$$
\begin{array}{ll}
A \mathrm{x}_{i}=\lambda_{i} \mathrm{x}_{i} & i=1, \ldots, k \\
A \mathrm{x}_{i}=0 & i=k+1, \ldots, n
\end{array}
$$

