HOMEWORK #8

Chapter 6

SECTION 1

2. If A is triangular then $A - a_{ii}I$ will be a triangular matrix with a zero entry in the (i, i) position. Since the determinant of a triangular matrix is the product of its diagonal elements it follows that

$$\det(A-a_{ii}I)=0$$

Thus the eigenvalues of A are $a_{11}, a_{22}, \ldots, a_{nn}$.

3. A is singular if and only if det(A) = 0. The scalar 0 is an eigenvalue if and only if

$$\det(A-0I) = \det(A) = 0$$

Thus A is singular if and only if one of its eigenvalues is 0.

4. If A is a nonsingular matrix and λ is an eigenvalue of A, then there exists a nonzero vector x such that

$$A\mathbf{x} = \lambda \mathbf{x}$$
$$\mathbf{A}^{-1}A\mathbf{x} = \lambda A^{-1}\mathbf{x}$$

It follows from Exercise 3 that $\lambda \neq 0$. Therefore

$$A^{-1}\mathbf{x} = \frac{1}{\lambda}\mathbf{x}$$

and hence $1/\lambda$ is an eigenvalue of A^{-1} .

5. In the case where m = 1, $\lambda^1 = \lambda$ is an eigenvalue of A with eigenvector x. Suppose λ^k is an eigenvalue of A^k and x is an eigenvector belonging to λ^k .

$$A^{k+1}\mathbf{x} = A(A^k\mathbf{x}) = A(\lambda^k\mathbf{x}) = \lambda^k A\mathbf{x} = \lambda^{k+1}\mathbf{x}$$

Thus λ^{k+1} is an eigenvalue of A^{k+1} and x is an eigenvector belonging to λ^{k+1} . This completes the induction proof.

6. If A is idempotent and λ is an eigenvalue of A with eigenvector x, then

$$A\mathbf{x} = \lambda \mathbf{x}$$
$$A^2 \mathbf{x} = \lambda A \mathbf{x} = \lambda^2 \mathbf{x}$$

and

$$A^2 \mathbf{x} = A \mathbf{x} = \lambda \mathbf{x}$$

Therefore

$$(\lambda^2 - \lambda)\mathbf{x} = \mathbf{0}$$

Since $x \neq 0$ it follows that

$$\lambda^2 - \lambda = 0$$

$$\lambda = 0 \quad \text{or} \quad \lambda = 1$$

- 7. If λ is an eigenvalue of A, then λ^k is an eigenvalue of A^k (Exercise 5). If $A^k = O$, then all of its eigenvalues are 0. Thus $\lambda^k = 0$ and hence $\lambda = 0$.
- **9.** $det(A \lambda I) = det((A \lambda I)^T) = det(A^T \lambda I)$. Thus A and A^T have the same characteristic polynomials and consequently must have the same eigenvalues. The eigenspaces however will not be the same. For example if

$$\boldsymbol{A} = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right)$$

then the eigenvalues of A and A^T are both given by

$$\lambda_1 = \lambda_2 = 1$$

The eigenspace of A corresponding to $\lambda = 1$ is spanned by $(1, 0)^T$ while the eigenspace of A^T is spanned by $(0, 1)^T$. Exercise 24 shows how the eigenvectors of A and A^T are related.

- 10. det $(A \lambda I) = \lambda^2 (2\cos\theta)\lambda + 1$. The discriminant will be negative unless θ is a multiple of π . The matrix A has the effect of rotating a real vector \mathbf{x} about the origin by an angle of θ . Thus $A\mathbf{x}$ will be a scalar multiple of \mathbf{x} if and only if θ is a multiple of 180°.
- 12. Since tr A equals the sum of the eigenvalues the result follows by solving

$$\sum_{i=1}^n \lambda_i = \sum_{i=1}^n a_{ii}$$

for
$$\lambda_j$$
.
13. $\begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = \lambda^2 - (a_{11} + a_{22})\lambda + (a_{11}a_{22} - a_{21}a_{12})$
 $= \lambda^2 - (\operatorname{tr} A)\lambda + \det(A)$

- 14. $A(A^m \mathbf{x}) = A^{m+1} \mathbf{x} = A^m(A\mathbf{x}) = A^m(\lambda \mathbf{x}) = \lambda(A^m \mathbf{x})$
- 15. If $A \lambda_0 I$ has rank k then $N(A \lambda_0 I)$ will have dimension n k.
- 16. The subspace spanned by x and Ax will have dimension 1 if and only if x and Ax are linearly dependent and $x \neq 0$. The vectors x and Ax will be linearly dependent if and only if $Ax = \lambda x$ for some scalar λ .
- 17. (a) If $\alpha = a + bi$ and $\beta = c + di$, then

$$\overline{\alpha+\beta}=\overline{(a+c)+(b+d)i}=(a+c)-(b+d)i$$

and

$$\overline{\alpha} + \overline{\beta} = (a - bi) + (c - di) = (a + c) - (b + d)i$$

Therefore $\overline{\alpha + \beta} = \overline{\alpha} + \overline{\beta}$.

Next we show that the conjugate of the product of two numbers is the product of the conjugates.

$$\overline{\alpha\beta} = \overline{(ac - bd) + (ad + bc)i} = (ac - bd) - (ad + bc)i$$
$$\overline{\alpha}\overline{\beta} = (a - bi)(c - di) = (ac - bd) - (ad + bc)i$$

Therefore $\overline{\alpha\beta} = \overline{\alpha}\overline{\beta}$.

(b) If $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times r}$, then the (i, j) entry of \overline{AB} is given by

$$\overline{a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}} = \overline{a_{i1}b_{1j}} + \overline{a_{i2}b_{2j}} + \dots + \overline{a_{in}b_{nj}}$$

The expression on the right is the (i, j) entry of $\overline{A} \overline{B}$. Therefore

$$\overline{AB} = \overline{A}\overline{B}$$

18. If $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \cdots + c_r \mathbf{x}_r$ is an element of S, then

$$A\mathbf{x} = (c_1\lambda_1)\mathbf{x}_1 + (c_2\lambda_2)\mathbf{x}_2 + \dots + (c_r\lambda_r)\mathbf{x}_r$$

Thus $A\mathbf{x}$ is also an element of S.

19. Since $x \neq 0$ and S is nonsingular it follows that $Sx \neq 0$. If $B = S^{-1}AS$, then AS = SB and it follows that

$$A(S\mathbf{x}) = (AS)\mathbf{x} = SB\mathbf{x} = S(\lambda \mathbf{x}) = \lambda(S\mathbf{x})$$

Therefore $S\mathbf{x}$ is an eigenvector of A belonging to λ .

20. If x is an eigenvector of A belonging to the eigenvalue λ and x is also an eigenvector of B corresponding to the eigenvalue μ , then

$$(\alpha A + \beta B)\mathbf{x} = \alpha A\mathbf{x} + \beta B\mathbf{x} = \alpha \lambda \mathbf{x} + \beta \mu \mathbf{x} = (\alpha \lambda + \beta \mu)\mathbf{x}$$

Therefore **x** is an eigenvector of $\alpha A + \beta B$ belonging to $\alpha \lambda + \beta \mu$. 21. If $\lambda \neq 0$ and **x** is an eigenvector belonging to λ , then

$$A\mathbf{x} = \lambda \mathbf{x}$$
$$\mathbf{x} = \frac{1}{\lambda}A\mathbf{x}$$

Since $A\mathbf{x}$ is in R(A) it follows that $\frac{1}{\lambda}A\mathbf{x}$ is in R(A).

89

$$A = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T + \dots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T$$

then for $i = 1, \ldots, n$

$$A\mathbf{u}_i = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T \mathbf{u}_i + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T \mathbf{u}_i + \dots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T \mathbf{u}_i$$

Since $\mathbf{u}_i^T \mathbf{u}_i = 0$ unless j = i, it follows that

$$A\mathbf{u}_i = \lambda_i \mathbf{u}_i \mathbf{u}_i^T \mathbf{u}_i = \lambda_i \mathbf{u}_i$$

and hence λ_i is an eigenvalue of A with eigenvector \mathbf{u}_i . The matrix A is symmetric since each $\lambda_i \mathbf{u}_i \mathbf{u}_i^T$ is symmetric and any sum of symmetric matrices is symmetric.

- **23.** If the columns of A each add up to a fixed constant δ then the row vectors of $A \delta I$ all add up to $(0, 0, \dots, 0)$. Thus the row vectors of $A \delta I$ are linearly dependent and hence $A \delta I$ is singular. Therefore δ is an eigenvalue of A.
- **24.** Since y is an eigenvector of A^T belonging to λ_2 it follows that

$$\mathbf{x}^T A^T \mathbf{y} = \lambda_2 \mathbf{x}^T \mathbf{y}$$

The expression $\mathbf{x}^T A^T \mathbf{y}$ can also be written in the form $(A\mathbf{x})^T \mathbf{y}$. Since \mathbf{x} is an eigenvector of A belonging to λ_1 , it follows that

$$\mathbf{x}^T A^T \mathbf{y} = (A\mathbf{x})^T \mathbf{y} = \lambda_1 \mathbf{x}^T \mathbf{y}$$

Therefore

$$(\lambda_1 - \lambda_2)\mathbf{x}^T \mathbf{y} = 0$$

and since $\lambda_1 \neq \lambda_2$, the vectors **x** and **y** must be orthogonal.

25. (a) If λ is a nonzero eigenvalue of AB with eigenvector **x**, then let $\mathbf{y} = B\mathbf{x}$. Since

$$A\mathbf{y} = AB\mathbf{x} = \lambda\mathbf{x} \neq \mathbf{0}$$

it follows that $\mathbf{y} \neq \mathbf{0}$ and

$$BA\mathbf{y} = BA(B\mathbf{x}) = B(AB\mathbf{x}) = B\lambda\mathbf{x} = \lambda\mathbf{y}$$

Thus λ is also an eigenvalue of BA with eigenvector y.

(b) If $\lambda = 0$ is an eigenvalue of AB, then AB must be singular. Since

 $\det(BA) = \det(B)\det(A) = \det(A)\det(B) = \det(AB) = 0$

it follows that BA is also singular. Therefore $\lambda = 0$ is an eigenvalue of BA.

26. If AB - BA = I, then BA = AB - I. If the eigenvalues of AB are $\lambda_1, \lambda_2, \ldots, \lambda_n$, then it follows from Exercise 8 that the eigenvalues of BA are $\lambda_1 - 1, \lambda_2 - 1, \ldots, \lambda_n - 1$. This contradicts the result proved in Exercise 25 that AB and BA have the same eigenvalues.

27. (a) If λ_i is a root of $p(\lambda)$, then

$$\lambda_i^n = a_{n-1}\lambda_i^{n-1} + \dots + a_1\lambda_i + a_0$$

Thus if $\mathbf{x} = (\lambda_i^{n-1}, \lambda_i^{n-2}, \dots, \lambda_i, 1)^T$, then
 $C\mathbf{x} = (\lambda_i^n, \lambda_i^{n-1}, \dots, \lambda_i^2, \lambda_i)^T = \lambda_i \mathbf{x}$

and hence λ_i is an eigenvalue of C with eigenvector **x**. (b) If $\lambda_1, \ldots, \lambda_n$ are the roots of $p(\lambda)$, then

$$p(\lambda) = (-1)^n (\lambda - \lambda_1) \cdots (\lambda - \lambda_n)$$

If $\lambda_1, \ldots, \lambda_n$ are all distinct then by part (a) they are the eigenvalues of C. Since the characteristic polynomial of C has lead coefficient $(-1)^n$ and roots $\lambda_1, \ldots, \lambda_n$, it must equal $p(\lambda)$.

28. Let

$$D_m(\lambda) = \begin{pmatrix} a_m & a_{m-1} & \cdots & a_1 & a_0 \\ 1 & -\lambda & \cdots & 0 & 0 \\ \vdots & & & & \\ 0 & 0 & \cdots & 1 & -\lambda \end{pmatrix}$$

It can be proved by induction on m that

$$\det(D_m(\lambda)) = (-1)^m (a_m \lambda^m + a_{m-1} \lambda^{m-1} + \dots + a_1 \lambda + a_0)$$

If det $(C - \lambda I)$ is expanded by cofactors along the first column one obtains

$$\det(C - \lambda I) = (a_{n-1} - \lambda)(-\lambda)^{n-1} - \det(D_{n-2})$$

= $(-1)^n (\lambda^n - a_{n-1}\lambda^{n-1}) - (-1)^{n-2} (a_{n-2}\lambda^{n-2} + \dots + a_1\lambda + a_0)$
= $(-1)^n [(\lambda^n - a_{n-1}\lambda^{n-1}) - (a_{n-2}\lambda^{n-2} + \dots + a_1\lambda + a_0)]$
= $(-1)^n [\lambda^n - a_{n-1}\lambda^{n-1} - a_{n-2}\lambda^{n-2} - \dots - a_1\lambda - a_0]$
= $p(\lambda)$

and the second second

SECTION 2

3. (a) If

 $\mathbf{Y}(t) = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + \dots + c_n e^{\lambda_n t} \mathbf{x}_n$

then

$$\mathbf{Y}_0 = \mathbf{Y}(0) = c_1 \mathbf{x}_2 + c_2 \mathbf{x}_2 + \dots + c_n \mathbf{x}_n$$

(b) It follows from part (a) that

 $\mathbf{Y}_0 = X\mathbf{c}$

If $\mathbf{x}_1, \ldots, \mathbf{x}_n$ are linearly independent then X is nonsingular and we can solve for \mathbf{c}

$$\mathbf{c} = X^{-1} \mathbf{Y}_0$$

7. It follows from the initial condition that

 $x'_1(0) = a_1\sigma = 2$ $x'_2(0) = a_2\sigma = 2$

and hence

$$a_1 = a_2 = 2/\sigma$$

Substituting for x_1 and x_2 in the system

yields

$$-a_1\sigma^2\sin\sigma t = -2a_1\sin\sigma t + a_2\sin\sigma t$$
$$-a_2\sigma^2\sin\sigma t = a_1\sin\sigma t - 2a_2\sin\sigma t$$

Replacing a_1 and a_2 by $2/\sigma$ we get

 $\sigma^2 = 1$

Using either $\sigma = -1$, $a_1 = a_2 = -2$ or $\sigma = 1$, $a_1 = a_2 = 2$ we obtain the solution

$$\begin{aligned} x_1(t) &= 2\sin t \\ x_2(t) &= 2\sin t \end{aligned}$$

9.
$$m_1y_1'' = k_1y_1 - k_2(y_2 - y_1) - m_1g$$

 $m_2y_2'' = k_2(y_2 - y_1) - m_2g$

11. If

$$y^{(n)} = a_0 y + a_1 y' + \dots + a_{n-1} y^{(n-1)}$$

and we set

$$y_1 = y, \ y_2 = y'_1 = y'', \ y_3 = y'_2 = y''', \dots, y_n = y'_{n-1} = y^n$$

then the *n*th order equation can be written as a system of first order equations of the form $\mathbf{Y}' = A\mathbf{Y}$ where

	(0)	y_2	0	• • •	0
	0	0	y 3	•••	0
<i>A</i> =	:				
	0	0	0	• • •	y_n
	a_0	a_1	a_2	•••	a_{n-1}

SECTION 3

- 1. The factorization XDX^{-1} is not unique. However the diagonal elements of D must be eigenvalues of A and if λ_i is the *i*th diagonal element of D, then \mathbf{x}_i must be an eigenvector belonging to λ_i
 - (a) det $(A \lambda I) = \lambda^2 1$ and hence the eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = -1$. $\mathbf{x}_1 = (1, 1)^T$ and $\mathbf{x}_2 = (-1, 1)^T$ are eigenvectors belonging to λ_1 and λ_2 , respectively. Setting

$$X = \left(\begin{array}{rrr} 1 & -1 \\ 1 & 1 \end{array}\right) \quad \text{and} \quad D = \left(\begin{array}{rrr} 1 & 0 \\ 0 & -1 \end{array}\right)$$

2

we have

$$A = XDX^{-1} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{pmatrix}$$

(b) The eigenvalues are $\lambda_1 = 2$, $\lambda_2 = 1$. If we take $\mathbf{x}_1 = (-2, 1)^T$ and $\mathbf{x}_2 = (-3, 2)^T$, then

$$A = XDX^{-1} = \begin{pmatrix} -2 & -3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -2 & -3 \\ 1 & 2 \end{pmatrix}$$

(c) $\lambda_1 = 0, \lambda_2 = -2$. If we take $\mathbf{x}_1 = (\mathbf{4}, 1)^T$ and $\mathbf{x}_2 = (2, 1)^T$, then

$$A = XDX^{-1} = \begin{pmatrix} 4 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 1/2 & -1 \\ -1/2 & 2 \end{pmatrix}$$

(d) The eigenvalues are the diagonal entries of A. The eigenvectors corresponding to $\lambda_1 = 2$ are all multiples of $(1, 0, 0)^T$. The eigenvectors belonging to $\lambda_2 = 1$ are all multiples of (2, -1, 0) and the eigenvectors corresponding to $\lambda_3 = -1$ are multiples $(1, -3, 3)^T$.

$$A = XDX^{-1} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & -3 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 & \frac{5}{3} \\ 0 & -1 & -1 \\ 0 & 0 & \frac{1}{3} \end{pmatrix}$$

(e)
$$\lambda_{1} = 1, \lambda_{2} = 2, \lambda_{3} = -2$$

 $\mathbf{x}_{1} = (3, 1, 2)^{T}, \mathbf{x}_{2} = (0, 3, 1)^{T}, \mathbf{x}_{3} = (0, -1, 1)^{T}$
 $A = XDX^{-1} = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 3 & -1 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} \frac{1}{3} & 0 & 0 \\ -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ -\frac{5}{12} & -\frac{1}{4} & \frac{3}{4} \end{pmatrix}$
(f) $\lambda_{1} = 2, \lambda_{2} = \lambda_{3} = 0, \mathbf{x}_{1} = (1, 2, 3)^{T}, \mathbf{x}_{2} = (1, 0, 1)^{T}, \mathbf{x}_{3} = (-2, 1, 0)^{T}$
 $A = XDX^{-1} = \begin{pmatrix} 1 & 1 & -2 \\ 2 & 0 & 1 \\ 3 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{3}{2} & -3 & \frac{5}{2} \\ -1 & -1 & 1 \end{pmatrix}$
. If $A = XDX^{-1}$, then $A^{6} = XD^{6}X^{-1}$.
(a) $D^{6} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}^{6} = I$
 $A^{6} = XD^{6}X^{-1} = XX^{-1} = I$
(b) $A^{6} = \begin{pmatrix} -2 & -3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}^{6} \begin{pmatrix} -2 & -3 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 253 & 378 \\ -126 & -190 \end{pmatrix}$
(c) $A^{6} = \begin{pmatrix} 4 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix}^{6} \begin{pmatrix} 1/2 & -1 \\ -1/2 & 2 \end{pmatrix} = \begin{pmatrix} -64 & 256 \\ -32 & 128 \end{pmatrix}$
(d) $A^{6} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & -3 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}^{6} \begin{bmatrix} 1 & 2 & 5/3 \\ 0 & -1 & -1 \\ 0 & 0 & 1/3 \end{pmatrix}$

0

-1 J

10

0 1/3 J

3] [0

93

$$= \begin{cases} 64 & 126 & 105 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{cases}$$

$$(e) A^6 = \begin{cases} 3 & 0 & 0 \\ 1 & 3 & -1 \\ 2 & 1 & 1 \end{cases} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ -12 & 64 & 0 \end{pmatrix}$$

$$= \begin{cases} -21 & 64 & 0 \\ -42 & 0 & 64 \\ -42 & 0 & 64 \end{pmatrix}$$

$$(f) A^6 = \begin{cases} 1 & 1 & -2 \\ -42 & 0 & 64 \\ 3 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ -12 & -1 & 1 \\ -12 & -1 & 1 \end{pmatrix}$$

$$(f) A^6 = \begin{cases} 2 & 0 & 1 \\ 2 & 0 & 0 \\ -12 & -1 & -1 \\ -12 & -1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ -1 & -1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$

$$= \begin{cases} 32 & 64 & -32 \\ 64 & 128 & -64 \\ 96 & 102 & -96 \\ 96 & 102 & -96 \end{pmatrix}$$

$$(h) A^{-1} = \begin{cases} -2 & -3 \\ 1 & -2 & -3 \\ -1 & -1 & -3 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & -3 \end{pmatrix}$$

$$(h) A^{-1} = \begin{cases} -2 & -3 \\ 1 & 2 & 1 \\ -2 & -3 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & -3 \end{pmatrix}$$

$$(h) A^{-1} = \begin{cases} -2 & -3 \\ 1 & -2 & -3 \\ 0 & -1 & -3 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & -3 \end{pmatrix}$$

$$(e) A^{-1} = \begin{cases} 1 & 3 & 0 & 0 \\ 0 & -1 & -3 \\ 2 & 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix}$$

$$(e) A^{-1} = \begin{cases} 1 & 3 & 0 \\ 0 & 0 & -1 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$(e) A^{-1} = \begin{cases} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

 $A = XDX^{-1}$

4. (a) The eigenvalues of A are $\lambda_1 = 1$ and $\lambda_2 = 0$

Since $D^2 = D$ it follows that

$$A^{2} = XD^{2}X^{-1} = XDX^{-1} = A$$

(b) $A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
 $B = XD^{1/2}X^{-1} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
 $= \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

5. If X diagonalizes A, then

$$X^{-1}AX = D$$

where D is a diagonal matrix. It follows that

$$D = D^{T} = X^{T} A^{T} (X^{-1})^{T} = Y^{-1} A^{T} Y$$

Therefore Y diagonalizes A^T .

6. If $A = ADA^{-1}$ where D is a diagonal matrix whose diagonal elements are all either 1 or -1, then $D^{-1} = D$ and

$$A^{-1} = XD^{-1}X^{-1} = XDX^{-1} = A$$

7. If x is an eigenvector belonging to the eigenvalue a, then

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & b-a \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

and it follows that

$$x_2=x_3=0$$

Thus the eigenspace corresponding to $\lambda_1 = \lambda_2 = a$ has dimension 1 and is spanned by $(1, 0, 0)^T$. The matrix is defective since a is a double eigenvalue and its eigenspace only has dimension 1.

8. (a) The characteristic polynomial of the matrix factors as follows.

$$p(\lambda) = \lambda(2-\lambda)(\alpha-\lambda)$$

Thus the only way that the matrix can have a multiple eigenvalue is if $\alpha = 0$ or $\alpha = 2$. In the case $\alpha = 0$, we have that $\lambda = 0$ is an eigenvalue of multiplicity 2 and the corresponding eigenspace is spanned by $\mathbf{x}_1 = (-1, 1, 0)^T$ and $\mathbf{x}_2 = \mathbf{e}_3$. Since $\lambda = 0$ has two linearly independent eigenvectors, the matrix is not defective. Similarly in the case $\alpha = 2$ the matrix will not be defective since the eigenvalue $\lambda = 2$ possesses two linearly independent eigenvectors $\mathbf{x}_1 = (1, 1, 0)^T$ and $\mathbf{x}_2 = \mathbf{e}_3$.

9. If $A - \lambda I$ has rank 1, then

$$\dim N(A-\lambda I)=4-1=3$$

Since λ has multiplicity 3 the matrix is not defective. 10. (a) The proof is by induction. In the case m = 1,

$$A\mathbf{x} = \sum_{i=1}^{n} \alpha_i A \mathbf{x}_i = \sum_{i=1}^{n} \alpha_i \lambda_i \mathbf{x}_i$$

If

$$A^k \mathbf{x} = \sum_{i=1}^n \alpha_i \lambda_i^k \mathbf{x}_i$$

then

$$A^{k+1}\mathbf{x} = A(A^k\mathbf{x}) = A(\sum_{i=1}^n \alpha_i \lambda_i^k \mathbf{x}_i) = \sum_{i=1}^n \alpha_i \lambda_i^k A \mathbf{x}_i = \sum_{i=1}^n \alpha_i \lambda_i^{k+1} \mathbf{x}_i$$

(b) If $\lambda_1 = 1$, then

$$A^m \mathbf{x} = \alpha_1 \mathbf{x}_1 + \sum_{i=2}^n \alpha_i \lambda_i^m \mathbf{x}_i$$

Since $0 < \lambda_i < 1$ for i = 2, ..., n, it follows that $\lambda_i^m \to 0$ as $m \to \infty$. Hence

$$\lim_{m\to\infty}A^m\mathbf{x}=\alpha_1\mathbf{x}_1$$

11. If A is an $n \times n$ matrix and λ is an eigenvalue of multiplicity n then A is diagonalizable if and only if

$$\dim N(A-\lambda I)=n$$

or equivalently

$$\operatorname{rank}(A - \lambda I) = 0$$

The only way the rank can be 0 is if

$$\begin{aligned} A - \lambda I &= O \\ A &= \lambda I \end{aligned}$$

12. If A is nilpotent, then 0 is an eigenvalue of multiplicity n. It follows from Exercise 11 that A is diagonalizable if and only if A = O.

1

13. Let A be a diagonalizable $n \times n$ matrix. Let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be the nonzero eigenvalues of A. The remaining eigenvalues are all 0.

$$\lambda_{k+1} = \lambda_{k+2} = \cdots = \lambda_n = 0$$

If \mathbf{x}_i is an eigenvector belonging to λ_i , then

$$A\mathbf{x}_i = \lambda_i \mathbf{x}_i \qquad i = 1, \dots, k$$

$$A\mathbf{x}_i = 0 \qquad i = k + 1, \dots, n$$