MATH314 – HOMEWORK SOLUTIONS HOMEWORK #6

Section 4.3: Problems 1(a)(b), 3, 4, 6, 15

Section 5.1: Problems 1(a)(b),3(a),5,9

Section 5.2: Problems 1(b),2,3,4

Section 5.3: Problems 1(a),3(a),5,7

Krzysztof Galicki

Problem 4.3.1

a) We have

$$L(\mathbf{e}_1) = L\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} -1\\0 \end{pmatrix} = -\mathbf{e}_1, \ L(\mathbf{e}_2) = L\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0\\1 \end{pmatrix} = \mathbf{e}_2,$$

$$L(\mathbf{u}_1) = L\begin{pmatrix} 1\\1 \end{pmatrix} = \begin{pmatrix} -1\\1 \end{pmatrix} = \mathbf{u}_2, \ L(\mathbf{u}_2) = L\begin{pmatrix} -1\\1 \end{pmatrix} = \begin{pmatrix} 1\\1 \end{pmatrix} = \mathbf{u}_1.$$

Hence,

$$\mathbb{A} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \mathbb{B} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

b) We have

$$L(\mathbf{e}_1) = L\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} -1\\0 \end{pmatrix} = -\mathbf{e}_1, \quad L(\mathbf{e}_2) = L\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0\\-1 \end{pmatrix} = -\mathbf{e}_2,$$

$$L(\mathbf{u}_1) = L\begin{pmatrix} 1\\1 \end{pmatrix} = \begin{pmatrix} -1\\-1 \end{pmatrix} = -\mathbf{u}_1, \quad L(\mathbf{u}_2) = L\begin{pmatrix} -1\\1 \end{pmatrix} = \begin{pmatrix} 1\\-1 \end{pmatrix} = -\mathbf{u}_2.$$

Hence,

$$\mathbb{A} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \mathbb{B} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Problem 4.3.3

a) We have the transition matrix from $[\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3]$ to $[\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3]$ given by

$$\mathbb{U} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

b) Since the $L(\mathbf{x}) = (2x_1 - x_2 - x_3, 2x_2 - x - 1 - x_3, 2x_3 - x_1 - x_2)^T$ we get

$$\mathbb{A} = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}.$$

Hence,

$$\mathbb{B} = \mathbb{U}^{-1} \mathbb{A} \mathbb{U} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}.$$

Problem 4.3.4 We have the transition matrix from $[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$ to $[\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3]$ given by

$$\mathbb{V} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & -2 \\ 1 & 0 & 1 \end{pmatrix}.$$

Since

$$\mathbb{A} = \begin{pmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1 \end{pmatrix},$$

we have

$$\mathbb{B} = \mathbb{V}^{-1} \mathbb{A} \mathbb{V} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & -2 \\ 1 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & -2 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Problem 4.3.6

a) Let $[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] = [1, e^x, e^{-x}]$ and $[\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3] = [1, \frac{1}{2}(e^x + e^{-x}), \frac{1}{2}(e^x - e^{-x})]$. Since

$$\mathbf{v}_1 = \mathbf{u}_1,$$

$$\mathbf{v}_2 = \mathbf{u}_2 + \mathbf{u}_3,$$

$$\mathbf{v}_3 = \mathbf{u}_2 - \mathbf{u}_3$$

The transition matrix from the basis $[1, e^x, e^{-x}]$ to the basis $[1, \frac{1}{2}(e^x + e^{-x}), \frac{1}{2}(e^x - e^{-x})]$ is

$$\mathbb{S} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix}.$$

b) If the linear operator D is the differentiation we have

$$D(\mathbf{u}_1) = 0,$$

$$D(\mathbf{u}_2) = \mathbf{u}_3,$$

$$D(\mathbf{u}_3) = \mathbf{u}_2,$$

so that

$$\mathbb{A} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

c) On the other hand, clearly,

$$D(\mathbf{v}_1) = 0,$$

$$D(\mathbf{v}_2) = \mathbf{v}_2,$$

$$D(\mathbf{v}_3) = -\mathbf{v}_3,$$

so that

$$\mathbb{B} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

d) Showing that $\mathbb{B} = \mathbb{S}^{-1}\mathbb{A}\mathbb{S}$ is the same as showing that $\mathbb{S}\mathbb{B} = \mathbb{A}\mathbb{S}$. We get

$$\mathbb{SB} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}.$$

$$\mathbb{AS} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}.$$

Problem 4.3.15 Let

$$\operatorname{tr}(\mathbb{A}) = a_{11} + a_{22} + \dots + a_{nn}$$

be the sum of the diagonal elements of a square matrix $\mathbb{A} = (a_{ij})$.

a) We have

$$(\mathbb{AB})_{ii} = \sum_{k} a_{ik} b_{ki}$$

and

$$(\mathbb{BA})_{mm} = \sum_{j} b_{mj} a_{jm}.$$

Now, by definition, we have

$$\operatorname{tr}(\mathbb{AB}) = \sum_{ik} a_{ik} b_{ki},$$

$$\operatorname{tr}(\mathbb{B}\mathbb{A}) = \sum_{mj} b_{mj} a_{jm}.$$

But these double sums are the same by renaming m = k and j = i.

b) As $\mathbb{A} = \mathbb{S}^{-1}\mathbb{B}\mathbb{S}$, using part (a), we have

$$\operatorname{tr}(\mathbb{A}) = \operatorname{tr}(\mathbb{S}^{-1}\mathbb{B}\mathbb{S}) = \operatorname{tr}(\mathbb{B}\mathbb{S}^{-1}\mathbb{S}) = \operatorname{tr}(\mathbb{B}).$$

Problem 5.1.1

a) Let $\mathbf{v} = (2, 1, 3)^T$, $\mathbf{w} = (6, 3, 9)^T$. We have

$$\cos \theta = \frac{\mathbf{v} \cdot \mathbf{w}}{||\mathbf{v}||||\mathbf{w}||} = \frac{42}{\sqrt{14}\sqrt{126}} = \frac{42}{9 \cdot 14} = \frac{1}{3}.$$

b) Let $\mathbf{v} = (2, -3)^T$, $\mathbf{w} = (3, 2)^T$. We have

$$\cos \theta = \frac{\mathbf{v} \cdot \mathbf{w}}{||\mathbf{v}||||\mathbf{w}||} = 0.$$

Problem 5.1.3(a) Let $\mathbf{x} = (3,4)^T$, $\mathbf{y} = (1,0)^T$. Then $\mathbf{p} = (3,0)^T$ and $\mathbf{x} - \mathbf{p} = (0,4)^T$. Clearly, $\mathbf{p} \cdot (\mathbf{x} - \mathbf{p}) = (3,0)^T \cdot (0,4)^T = 0$.

Problem 5.1.5 Assume that the point in question is a vector with coordinates $(a, 2a)^T$. We must have that

$$\begin{pmatrix} 5 \\ 2 \end{pmatrix} - \begin{pmatrix} a \\ 2a \end{pmatrix} = \begin{pmatrix} 5 - a \\ 2 - 2a \end{pmatrix}$$

is perpendicular to $(a, 2a)^T$. But that means that

$$5 - a + 2(2 - 2a) = 0$$

which means that 9 = 5a. Hence, the point in question has coordinates (9/5, 18/5).

Problem 5.1.9 The normal vector to that plane has coordinates $\mathbf{n} = (2, 2, 1)$. Hence, the projection of the vector $\mathbf{v} = (1, 1, 1)^T$ on the normal

$$\mathbf{p} = \frac{\mathbf{v} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n}} \mathbf{n} = \frac{5}{9} (2, 2, 1)^T.$$

The shortest distance is the norm of **p** which is $\frac{5}{3}$.

Problem 5.2.1(b) We reduce A first

$$\mathbb{A} = \begin{pmatrix} 1 & 3 & 1 \\ 2 & 4 & 0 \end{pmatrix} \simeq \begin{pmatrix} 1 & 3 & 1 \\ 0 & -2 & -2 \end{pmatrix} \simeq \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 1 \end{pmatrix} \simeq \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}.$$

 $R(\mathbb{A}^T)$ is the row space of \mathbb{A} and, hence, we can choose the basis $\mathcal{B} = [(1,3,1)^T, (2,4,0)^T]$.

 $N(\mathbb{A})$ is the null space of \mathbb{A} , which is $(2t, -t, t)^T$ and, hence, we can choose the basis $\mathcal{B} = [(2, -1, 1)^T]$. Note that $N(\mathbb{A})$ is orthogonal to $R(\mathbb{A}^T)$.

 $R(\mathbb{A})$ is the column space of \mathbb{A} and, hence, we can choose the basis $\mathcal{B} = [(1,0)^T, (0,1)^T]$.

As $N(\mathbb{A}^T) = R(\mathbb{A})^{\perp}$ we conclude that $N(\mathbb{A}^T) = \{\mathbf{0}\}$ is trivial.

Problem 5.2.2 Let $S = \text{span}\{(1, -1, 1)^T\}.$

- a) S^{\perp} is the null space of $\mathbb{A}=(1 \ -1 \ 1).$ These are all vectors $(s-t,s,t)^T=s(1,1,0)^T+t(-1,0,1).$
- b) S is the line through (0,0,0) parallel to **x**. S^{\perp} is the plane through (0,0,0) perpendicular to this line and it has equation $x_1 x_2 + x_3 = 0$.

Problem 5.2.3 Let S be the subspace of \mathbb{R}^3 spanned by the vectors $\mathbf{x} = (x_1, x_2, x_3)^T$ and $\mathbf{y} = (y_1, y_2, y_3)^T$. Let

$$\mathbb{A} = \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix}.$$

a) The null space of \mathbb{A} is defined to be all vectors in $\mathbb{Z} \in \mathbb{R}^3$ such that $\mathbb{A} \cdot \mathbf{z} = 0$. But, in particular, we get that

$$\mathbf{x} \cdot \mathbf{z} = 0 = \mathbf{y} \cdot \mathbf{z}$$

and, hence \mathbb{Z} must be perpendicular to both \mathbf{x}, \mathbf{y} . As our S is the span of these two vectors any such \mathbf{z} will be perpendicular to any vector in S and hence $\mathbf{z} \in S^{\perp}$. This shows that $N(\mathbb{A}) = S^{\perp}$.

b) Using part (a) we have

$$\mathbb{A} = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -1 & 2 \end{pmatrix} \simeq \begin{pmatrix} 1 & 2 & 1 \\ 0 & -3 & 1 \end{pmatrix} \simeq \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & -1/3 \end{pmatrix} \simeq \begin{pmatrix} 1 & 0 & 5/3 \\ 0 & 1 & -1/3 \end{pmatrix}.$$

Hence, the null space of A is spanned by $(-5,1,3)^T$. We get $S^{\perp} = \text{span}\{(-5,1,3)^T\}$.

Problem 5.2.4 We use the result of the previous problem and start with the matrix

$$\mathbb{A} = \begin{pmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 3 & -2 \end{pmatrix}.$$

As it is already reduced we get the nulls space

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2s - t \\ 2t - 3s \\ s \\ t \end{pmatrix} = s \begin{pmatrix} 2 \\ -3 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 2 \\ 0 \\ 1 \end{pmatrix}.$$

and $S^{\perp} = N(\mathbb{A}) = \text{span}\{(2, -3, 1, 0)^T, (-1, 2, 0, 1)^T\}.$

Problem 5.3.1(a) We have

$$\mathbb{A} = \begin{pmatrix} 1 & 1 \\ 2 & -3 \\ 0 & 0 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}.$$

To get the for the normal equation we need

$$\mathbb{A}^T \mathbb{A} = \begin{pmatrix} 5 & -5 \\ -5 & 10 \end{pmatrix}, \quad \mathbb{A}^T \mathbf{b} = \begin{pmatrix} 5 \\ 0 \end{pmatrix}.$$

Hence, the normal equation reads

$$\begin{pmatrix} 5 & -5 \\ -5 & 10 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \end{pmatrix}.$$

Its solution is

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbb{A}^{-1} \begin{pmatrix} 5 \\ 0 \end{pmatrix} = \frac{1}{25} \begin{pmatrix} 10 & 5 \\ 5 & 5 \end{pmatrix} \begin{pmatrix} 5 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

Problem 5.3.3(a) We have

$$\mathbb{A} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \\ -1 & -2 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}.$$

To get the for the normal equation we need

$$\mathbb{A}^T \mathbb{A} = \begin{pmatrix} 6 & 12 \\ 12 & 24 \end{pmatrix}, \quad \mathbb{A}^T \mathbf{b} = \begin{pmatrix} 5 \\ 10 \end{pmatrix}.$$

Hence, the normal equation reads

$$\begin{pmatrix} 6 & 12 \\ 12 & 24 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 5 \\ 10 \end{pmatrix}.$$

As the coefficient matrix of the normal equation is singular there is no unique solution to the problem. All solutions are described by

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 5/6 - 2t \\ t \end{pmatrix} = t \begin{pmatrix} -2 \\ 1 \end{pmatrix} + \begin{pmatrix} -5/6 \\ 0 \end{pmatrix}.$$

Problem 5.3.5

a) We have

$$\mathbb{A} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 0 \\ 1 \\ 3 \\ 9 \end{pmatrix},$$

$$\mathbb{A}^t \mathbb{A} = \begin{pmatrix} 4 & 2 \\ 2 & 6 \end{pmatrix}, \quad \mathbb{A}^T \mathbf{b} = \begin{pmatrix} 13 \\ 21 \end{pmatrix}.$$

Hence, the normal equation reads

$$\begin{pmatrix} 4 & 2 \\ 2 & 6 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = \begin{pmatrix} 13 \\ 21 \end{pmatrix}.$$

Its solution is

$$\begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = \mathbb{A}^{-1} \begin{pmatrix} 13 \\ 21 \end{pmatrix} = \frac{1}{20} \begin{pmatrix} 6 & -2 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} 13 \\ 21 \end{pmatrix} = \begin{pmatrix} 1.8 \\ 2.9 \end{pmatrix}.$$

The "best fitting line" has the equation y(x) = 1.8 + 2.9x. Please, plot these 4 points and the line in the Cartesian plane.

Problem 5.3.7 Let

$$\mathbb{A} = (\mathbf{a} \ \mathbf{x}),$$

where $\mathbf{a} = (1, \dots, 1)^T$ and $\mathbf{x} = (x_1, \dots, x_n)^T$. Then

$$\mathbb{A}^T \mathbb{A} = \begin{pmatrix} n & \sum_i x_i \\ \sum_{i=1}^n x_i & \mathbf{x}^T \mathbf{x} \end{pmatrix},$$

and

$$\mathbb{A}^T \mathbf{y} = \begin{pmatrix} \sum_{i=1}^n y_i \\ \mathbf{x}^T \mathbf{y} \end{pmatrix}.$$

Hence, the associated normal equation reads:

$$\begin{pmatrix} n & \sum_{i} x_{i} \\ \sum_{i} x_{i} & \mathbf{x}^{T} \mathbf{x} \end{pmatrix} \begin{pmatrix} c_{0} \\ c_{1} \end{pmatrix} = \begin{pmatrix} \sum_{i} y_{i} \\ \mathbf{x}^{T} \mathbf{y} \end{pmatrix}.$$

Now, assume that $\frac{1}{n} \sum_{i=1}^{n} x_i = 0$. Then $\sum_{i=1}^{n} x_i = 0$ and the normal equation simplifies to

$$\begin{pmatrix} n & 0 \\ 0 & \mathbf{x}^T \mathbf{x} \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^n y_i \\ \mathbf{x}^T \mathbf{y} \end{pmatrix}.$$

This is easily solved

$$\begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = \frac{1}{n\mathbf{x}^T\mathbf{x}} \begin{pmatrix} \mathbf{x}^T\mathbf{x} & 0 \\ 0 & n \end{pmatrix} \begin{pmatrix} \sum_{i=1}^n y_i \\ \mathbf{x}^T\mathbf{y} \end{pmatrix} = \begin{pmatrix} \frac{1}{n} \sum_{i=1}^n y_i \\ \frac{\mathbf{x}^T\mathbf{y}}{\mathbf{x}^T\mathbf{x}} \end{pmatrix} = \begin{pmatrix} \bar{y} \\ \frac{\mathbf{x}^T\mathbf{y}}{\mathbf{x}^T\mathbf{x}} \end{pmatrix}.$$