1. Find an orthonormal basis for the row space of \mathbb{A} containing the first row.

$$
\mathbb{A}=\left(\begin{array}{rrr}
0 & 0 & 1 \\
-2 & -2 & 1 \\
2 & 0 & -1
\end{array}\right) .
$$

SOLUTION: It is easy to see that $\operatorname{det}(\mathbb{A}) \neq 0$. Hence, the row space is \mathbb{R}^{3}. As the first row is simply \mathbf{k} so that we can take $\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$ as an orthonormal basis containing the first row.
2. Consider the following linear homogeneous equations

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}+x_{4}=0 \\
x_{1}-x_{2}+2 x_{3}+2 x_{4}=0 \\
x_{2}+x_{4}=0 .
\end{array}
$$

a) Find all the solutions of the system and write it as a k-flat W in \mathbb{B}^{4} :

SOLUTION:

We reduce

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 2 & 2 \\
0 & 1 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & -2 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 3
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 0 & 0 & -3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 3
\end{array}\right) .
$$

Hence, the space of solutions is a line (1-flat) and it is given by $\operatorname{span}\{(3,-1,-3,1)\}$.
b) The space $W \subset \mathbb{R}^{4}$ found in (a) is a linear subspace in \mathbb{R}^{4}. Find an orthonormal basis for W.

SOLUTION:

Clearly, as W is 1 -dimensional its orthonormal basis is simply $\frac{1}{\sqrt{20}}(3,-1,-3,1)$.
c) Find W^{\perp} and write an orthonormal basis for it.

SOLUTION: W^{\perp} is simply the the row space of

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 2 & 2 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

which is also the row space of the reduced matrix

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & -3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 3
\end{array}\right)
$$

We apply the G-S process to get

$$
\begin{gathered}
\mathbf{u}_{1}=\frac{1}{\sqrt{10}}(1,0,0,-3) \\
\mathbf{x}_{2}-<\mathbf{x}_{2}, \mathbf{u}_{1}>\mathbf{u}_{1}=(0,1,0,1)+\frac{3}{\sqrt{10}} \frac{1}{\sqrt{10}}(1,0,0,-3)=(0,1,0,1)+\frac{3}{10}(1,0,0,-3)= \\
=(3 / 10,1,0,1 / 10)=\frac{1}{10}(3,10,0,1) \\
\mathbf{u}_{2}=\frac{1}{\sqrt{110}}(3,10,0,1) \\
=(0,0,1,3)+\frac{9}{\sqrt{10}} \frac{1}{\sqrt{10}}(1,0,0,-3)-\frac{3}{\sqrt{110}} \frac{1}{\sqrt{110}}(3,10,0,1)= \\
=(0,0,1,3)+\frac{9}{10}(1,0,0,-3)-\frac{3}{110}(3,10,0,1)= \\
=\frac{1}{110}[(0,0,110,330)+(99,0,0,-297)-(9,30,0,3)]=\frac{1}{11}(9,-3,11,3) \\
\mathbf{u}_{3}=\frac{1}{\sqrt{220}}(9,-3,11,3)
\end{gathered}
$$

3. Given the following symmetric matrix

$$
\mathbb{A}=\left(\begin{array}{rrr}
1 & -1 & -1 \\
-1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right)
$$

find
a) the characteristic polynomial of \mathbb{A} :

SOLUTION: Note that

$$
\begin{gathered}
p(\lambda)=\operatorname{det}\left(\begin{array}{ccc}
1-\lambda & -1 & -1 \\
-1 & 1-\lambda & -1 \\
-1 & -1 & 1-\lambda
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
2-\lambda & \lambda-2 & 0 \\
-1 & 1-\lambda & -1 \\
0 & \lambda-2 & 2-\lambda
\end{array}\right)= \\
=(2-\lambda)\left(\operatorname{det}\left(\begin{array}{cc}
1-\lambda & -1 \\
\lambda-2 & 2-\lambda
\end{array}\right)+\operatorname{det}\left(\begin{array}{cc}
-1 & -1 \\
0 & 2-\lambda
\end{array}\right)\right)= \\
=(2-\lambda)((2-\lambda)[(1-\lambda)-1]-(2-\lambda))= \\
=(2-\lambda)^{2}(-1-\lambda)=-(2-\lambda)^{2}(1+\lambda)
\end{gathered}
$$

b) all eigenvalues of \mathbb{A} :

SOLUTION: Hence, \mathbb{A} has two real eigenvalues $\{-1,2\}$.
c) all eigenvectors of \mathbb{A} :

SOLUTION: Consider $\lambda=-1$ first. We have to find the null space of the following matrix:

$$
\begin{gathered}
\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right) \sim \\
\sim\left(\begin{array}{ccc}
0 & 3 & -3 \\
-1 & 2 & -1 \\
0 & -3 & 3
\end{array}\right) \sim\left(\begin{array}{ccc}
0 & 1 & -1 \\
1 & -2 & 1 \\
0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Hence, the eigenspace

$$
E_{\lambda=-1}=\operatorname{span}\{(1,1,1)\} .
$$

Next, consider $\lambda=2$. Here we have to find the null space of the following matrix:

$$
\left(\begin{array}{lll}
-1 & -1 & -1 \\
-1 & -1 & -1 \\
-1 & -1 & -1
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The null space is give by all vectors $(-s-t, s, t)=s(-1,1,0)+t(-1,0,1)$. Hence, the eigenspace

$$
E_{\lambda=2}=\operatorname{span}\{(-1,1,0),(-1,0,1)\} .
$$

4. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that

$$
T\binom{1}{0}=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right), \quad T\binom{1}{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) .
$$

Find the associated matrix \mathbb{A} of T. Compute $T\binom{1}{2}$.

SOLUTION: We have

$$
T\binom{0}{1}=T\left(\binom{1}{1}-\binom{1}{0}\right)=T\binom{1}{1}-T\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)-\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)=\left(\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right) .
$$

Hence, the associated matrix of T is

$$
\mathbb{A}_{T}=\left(\begin{array}{cc}
1 & 0 \\
2 & -2 \\
-1 & 1
\end{array}\right)
$$

In particular,

$$
T\binom{1}{2}=\left(\begin{array}{cc}
1 & 0 \\
2 & -2 \\
-1 & 1
\end{array}\right)\binom{1}{2}=\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)
$$

We can also get this as

$$
T\binom{1}{2}=T\binom{1}{0}+2 T\binom{0}{1}=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)+2\left(\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right)=\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)
$$

