1. Find an orthonormal basis for the row space of \mathbf{A} containing the first row.

$$
\mathbf{A}=\left(\begin{array}{rrr}
0 & 0 & 1 \\
-2 & -2 & 1 \\
2 & 0 & -1
\end{array}\right) .
$$

2. Consider the following linear homogeneous equations

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}+x_{4}=0 \\
x_{1}-x_{2}+2 x_{3}+2 x_{4}=0 \\
x_{2}+x_{4}=0 .
\end{array}
$$

a) Find all the solutions of the system and write it as a linear subspace W in \mathbb{R}^{4}.
b) The space $W \subset \mathbb{R}^{4}$ found in (a) is a linear subspace in \mathbb{R}^{4}. Find an orthonormal basis for W.
c) Find W^{\perp} and write an orthonormal basis for it.
3. Given the following symmetric matrix

$$
\mathbf{A}=\left(\begin{array}{rrr}
1 & -1 & -1 \\
-1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right)
$$

find
a) the characteristic polynomial of \mathbf{A},
b) all eigenvalues of \mathbf{A},
c) all eigenvectors of \mathbf{A},
4. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that

$$
T\binom{1}{0}=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right), \quad T\binom{1}{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) .
$$

Find the associated matrix A of T. Compute $T\binom{1}{2}$.

