MATHEMATICS 314

NAME: \qquad

SSN: \qquad
——
\qquad
2.
3. \qquad
4. \qquad

TOTAL

Mathematics 314

1. (30 pts.) Solve the following linear system

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3}-x_{4} & =4 \\
2 x_{1}-3 x_{2}+2 x_{3}-3 x_{4} & =-1 \\
3 x_{1}-5 x_{2}+3 x_{3}-4 x_{4} & =3 \\
-x_{1}+x_{2} & -x_{3}+2 x_{4}
\end{aligned}=5 .
$$

2. (30 pts.) Let

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & -2 & 1 \\
2 & -3 & 2 \\
3 & -5 & 3
\end{array}\right)
$$

(a) Write down a basis for the null space of \mathbf{A}.
(b) What are the nullity and the rank of \mathbf{A} ?
3. (30 pts.) Let $\mathbf{A} \in \mathcal{M}_{3 \times 3}(\mathbb{R})$ be a square matrix and

$$
\mathbf{A}=\left(\begin{array}{rrr}
1 & 3 & -2 \\
3 & 5 & -3 \\
-3 & 2 & -4
\end{array}\right)
$$

Find \mathbf{A}^{-1}.
4. (30 pts.) Consider the following three vectors in \mathbb{R}^{4}

$$
\vec{v}_{1}=(1,2,1,1), \quad \vec{v}_{2}=(2,1,0,2), \quad \vec{v}_{3}=(-1,4,3,3) .
$$

Determine if the set of these three vectors is linearly independent.
5. (20 bonus points) Let

$$
\mathbf{A}=\left(\begin{array}{ll}
5 & 1 \\
4 & 2
\end{array}\right)
$$

Express A as a product of elementary matrices.

SOLUTIONS

PROBLEM 1.

The partition matrix for this system is

$$
\left.\left.\begin{array}{c}
{[\mathbf{A} \mid \vec{b}]=\left[\begin{array}{cccc|c}
1 & -2 & 1 & -1 & 4 \\
2 & -3 & 2 & -3 & -1 \\
3 & -5 & 3 & -4 & 3 \\
-1 & 1 & -1 & 2 & 5
\end{array}\right]}
\end{array}\right]\left[\begin{array}{cccc|c}
1 & -2 & 1 & -1 & 4 \\
0 & 1 & 0 & -1 & -9 \\
0 & 1 & 0 & -1 & -9 \\
0 & -1 & 0 & 1 & 9
\end{array}\right] \simeq\left[\begin{array}{cccc|c}
1 & -2 & 1 & -1 & 4 \\
0 & 1 & 0 & -1 & -9 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \simeq\right]
$$

The system is clearly consistent. There are pivots in first two columns; columns number 3 and 4 are pivot-free. Hence, there is a two parameter family of solutions. We can introduce our free parameters as follows

$$
x_{4}=t, \quad x_{3}=s
$$

Then the first two equations of the reduced system give

$$
x_{1}=-x_{3}+3 x_{4}-14=-14+3 t-s, \quad x_{2}=x_{4}-9=-9+t .
$$

We can write

$$
\vec{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
-14+3 t-s \\
-9+t \\
s \\
t
\end{array}\right)=\left(\begin{array}{c}
-14 \\
-9 \\
0 \\
0
\end{array}\right)+s\left(\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{l}
3 \\
1 \\
0 \\
1
\end{array}\right) .
$$

PROBLEM 2.

(a) The null space of \mathbf{A} is the space of solutions of the corresponding homogeneous linear system. We get

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & -2 & 1 \\
2 & -3 & 2 \\
3 & -5 & 3
\end{array}\right) \simeq\left(\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right) \simeq\left(\begin{array}{lll}
\mathbf{1} & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

There are pivots in first two columns; column number 3 is pivot-free. Hence, there is a one-parameter family of solutions. We can introduce our free parameter as follows

$$
x_{3}=t
$$

Then the second equation says that $X_{2}=0$ and the first one that $x_{1}=-t$. Hence, we have the general solution in the form

$$
\vec{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
-t \\
0 \\
t
\end{array}\right)=t\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) .
$$

This the basis for the null space is $\{(-1,0,1)\}$.
(b) As nullity of \mathbf{A} equals 1, rank of \mathbf{A} must also equal to 2 so that the sum of rank and nullity adds up to 3 .

PROBLEM 3.

We find the determinant of \mathbf{A} first:

$$
\operatorname{det}(\mathbf{A})=\left|\begin{array}{ccc}
1 & 3 & -2 \\
3 & 5 & -3 \\
-3 & 2 & -4
\end{array}\right|=\left|\begin{array}{ccc}
1 & 3 & -2 \\
0 & -4 & 3 \\
0 & 11 & -10
\end{array}\right|=7 .
$$

Then we compute the adjoint

$$
\operatorname{adj}(\mathbf{A})=\left(\begin{array}{ccc}
-14 & 21 & 21 \\
8 & -10 & -11 \\
1 & -3 & -4
\end{array}\right)^{T}
$$

Hence,

$$
\mathbf{A}^{-1}=\frac{1}{7}\left(\begin{array}{ccc}
-14 & 8 & 1 \\
21 & -10 & -3 \\
21 & -11 & -4
\end{array}\right) .
$$

PROBLEM 4.

Consider the following 3×4 matrix

$$
\left(\begin{array}{l}
\vec{v}_{1} \\
\vec{v}_{2} \\
\vec{v}_{3}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 2 & 1 & 1 \\
2 & 1 & 0 & 2 \\
-1 & 4 & 3 & 3
\end{array}\right) \simeq\left(\begin{array}{cccc}
1 & 2 & 1 & 1 \\
0 & -3 & -2 & 0 \\
0 & 6 & 4 & 4
\end{array}\right) \simeq\left(\begin{array}{cccc}
1 & 2 & 1 & 1 \\
0 & 1 & 2 / 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Now, the all three rows have pivots so that the vectors must be linearly independent.

PROBLEM 5.

First we use the Gauss-Jordan reduction method to reduce \mathbf{A} to the identity matrix:

$$
\mathbf{A}=\left(\begin{array}{ll}
5 & 1 \\
4 & 2
\end{array}\right) \simeq\left(\begin{array}{cc}
1 & 1 / 5 \\
4 & 2
\end{array}\right) \simeq\left(\begin{array}{ll}
1 & 1 / 5 \\
0 & 6 / 5
\end{array}\right) \simeq\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \simeq\left(\begin{array}{cc}
1 & 1 / 5 \\
0 & 1
\end{array}\right) \simeq\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

We list, in order, all four elementary row operations performed in the reduction, the corresponding elementary matrices, and their inverses:

$$
\begin{gathered}
\frac{1}{5}(R 1): \quad \mathbf{E}_{1}=\left(\begin{array}{cc}
1 / 5 & 0 \\
0 & 1
\end{array}\right), \quad \mathbf{E}_{1}^{-1}=\left(\begin{array}{ll}
5 & 0 \\
0 & 1
\end{array}\right), \\
(R 2)-4(R 1): \quad \mathbf{E}_{2}=\left(\begin{array}{cc}
1 & 0 \\
-4 & 1
\end{array}\right), \quad \mathbf{E}_{2}^{-1}=\left(\begin{array}{ll}
1 & 0 \\
4 & 1
\end{array}\right), \\
\frac{5}{6}(R 2): \quad \mathbf{E}_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & 5 / 6
\end{array}\right), \quad \mathbf{E}_{3}^{-1}=\left(\begin{array}{cc}
1 & 0 \\
0 & 6 / 5
\end{array}\right), \\
(R 1)-\frac{1}{5}(R 2): \quad \mathbf{E}_{4}=\left(\begin{array}{cc}
1 & -1 / 5 \\
0 & 1
\end{array}\right), \quad \mathbf{E}_{4}^{-1}=\left(\begin{array}{cc}
1 & 1 / 5 \\
0 & 1
\end{array}\right) .
\end{gathered}
$$

Now, we can write (check all matrix multiplications):

$$
\mathbf{A}=\mathbf{E}_{1}^{-1} \cdot \mathbf{E}_{2}^{-1} \cdot \mathbf{E}_{3}^{-1} \cdot \mathbf{E}_{4}^{-1}=\left(\begin{array}{ll}
5 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
4 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 6 / 5
\end{array}\right)\left(\begin{array}{cc}
1 & 1 / 5 \\
0 & 1
\end{array}\right) .
$$

