Mathematics 314
7 March 2005

MATHEMATICS - 314 Section 002

NAME: \qquad

SSN:
\qquad
2.
3. \qquad
4. \qquad

TOTAL

1. (30 pts.) Solve the following linear system

$$
\begin{aligned}
& x_{1}-2 x_{2}+x_{3}-x_{4}+3 x_{5}=4 \\
& 2 x_{1}-3 x_{2}+2 x_{3}-3 x_{4}+2 x_{5}=7 \\
& 3 x_{1}-5 x_{2}+3 x_{3}-4 x_{4}+3 x_{5}=11
\end{aligned}
$$

2. (30 pts.) Let

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & -2 & 1 \\
4 & -6 & 4 \\
3 & -5 & 3
\end{array}\right)
$$

(a) Write down a basis for the null space of \mathbf{A}.
(b) What are the nullity and the rank of \mathbf{A} ?
3. (30 pts .)
a) Compute \mathbb{A}^{-1} by Gauss-Jordan reduction on $\left(\mathbb{A} \mid \mathbb{I}_{3}\right)$, where

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

b) Write both \mathbb{A} and \mathbb{A}^{-1} as a product of two elementary row matrices.
4. (30 pts.) Consider the following three vectors in \mathbb{R}^{3}

$$
\vec{v}_{1}=(1,2,1), \quad \vec{v}_{2}=(2,1,0), \quad \vec{v}_{3}=(-1,4,3) .
$$

Determine if the set of these three vectors is linearly independent.
5. (20 bonus points; no partial credit on the bonus problem)
a) Write down a non-zero 2×2 matrix \mathbb{A} such that $\mathbb{A}^{2}=\mathbb{O}_{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
b) Write down a non-zero 3×3 matrix \mathbb{A} such that $\mathbb{A}^{2} \neq \mathbb{O}_{3}$ but $\mathbb{A}^{3}=\mathbb{O}_{3}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.

SOLUTIONS

PROBLEM 1.

The partition matrix for this system is

$$
\begin{aligned}
{[\mathbf{A} \mid \vec{b}] } & =\left[\begin{array}{ccccc|c}
1 & -2 & 1 & -1 & 1 & 4 \\
2 & -3 & 2 & -3 & 2 & 7 \\
3 & -5 & 3 & -4 & 3 & 11
\end{array}\right]
\end{aligned} \simeq\left[\left.\begin{array}{cccc|c}
1 & -2 & 1 & -1 & 1 \\
0 & 1 & 0 & -1 & 0 \\
-1 \\
0 & 1 & 0 & -1 & 0
\end{array} \right\rvert\, \simeq \simeq 口 \begin{array}{l}
-1
\end{array}\right] \simeq\left[\begin{array}{ccccc|c}
1 & -2 & 1 & -1 & 1 & 4 \\
0 & 1 & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \simeq\left[\begin{array}{ccccc|c}
\mathbf{1} & 0 & 1 & -3 & 1 & 2 \\
0 & \mathbf{1} & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

The system is clearly consistent. There are pivots in first two columns; columns number 3 through 5 are pivot-free. Hence, there is a three-parameter family of solutions. We can introduce our free parameters as follows

$$
x_{5}=r, \quad x_{4}=t, \quad x_{3}=s
$$

Then the first two equations of the reduced system give

$$
x_{1}=-x_{3}+3 x_{4}-x_{5}+2=2-s+3 t-r, \quad x_{2}=x_{4}-1=-1+t
$$

We can write

$$
\vec{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
2+3 t-s-r \\
-1+t \\
s \\
t \\
r
\end{array}\right)=\left(\begin{array}{c}
2 \\
-1 \\
0 \\
0 \\
0
\end{array}\right)+s\left(\begin{array}{c}
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right)+t\left(\begin{array}{l}
3 \\
1 \\
0 \\
1 \\
0
\end{array}\right)+r\left(\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
1
\end{array}\right) .
$$

PROBLEM 2.

(a) The null space of \mathbf{A} is the space of solutions of the corresponding homogeneous linear system. We get

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & -2 & 1 \\
2 & -3 & 2 \\
3 & -5 & 3
\end{array}\right) \simeq\left(\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right) \simeq\left(\begin{array}{lll}
\mathbf{1} & 0 & 1 \\
0 & \mathbf{1} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

There are pivots in first two columns; column number 3 is pivot-free. Hence, there is a one-parameter family of solutions. We can introduce our free parameter as follows

$$
x_{3}=t
$$

Then the second equation says that $x_{2}=0$ and the first one that $x_{1}=-t$. Hence, we have the general solution in the form

$$
\vec{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
-t \\
0 \\
t
\end{array}\right)=t\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) .
$$

This the basis for the null space is $\{(-1,0,1)\}$, the null space $N(\mathbf{A})=\operatorname{span}(\{-1,0,1)\})$.
(b) As nullity of \mathbf{A} equals 1, rank of \mathbf{A} must also equal to 2 so that the sum of rank and nullity adds up to 3 .

PROBLEM 3.

We reduce the matrix \mathbb{A} in two steps:

$$
\mathbb{A}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \simeq\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \simeq\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

with the same two operations applied to the identity

$$
\mathbb{A}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \simeq\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \simeq\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)=\mathbb{A}^{-1}
$$

The two elementary matrices responsible for these two operations (in order) are

$$
\begin{array}{ll}
\mathbb{E}_{1}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \mathbb{E}_{1}^{-1}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\mathbb{E}_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right), \quad \mathbb{E}_{1}^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) .
\end{array}
$$

b) Now

$$
\begin{aligned}
\mathbb{A}^{-1} & =\mathbb{E}_{2} \cdot \mathbb{E}_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \\
\mathbb{A} & =\mathbb{E}_{1}^{-1} \cdot \mathbb{E}_{2}^{-1}=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

PROBLEM 4.

Consider the following 3×3 matrix $\left[\begin{array}{lll}\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}\end{array}\right]$, where all three vectors are considered as the column vectors. We get

$$
\begin{gathered}
{\left[\begin{array}{lll}
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}
\end{array}\right]=\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & 1 & 4 \\
1 & 0 & 3
\end{array}\right) \simeq\left(\begin{array}{ccc}
1 & 2 & -1 \\
0 & -3 & 6 \\
0 & -2 & 4
\end{array}\right) \simeq} \\
\simeq\left(\begin{array}{lll}
1 & 2 & -1 \\
0 & 1 & -2 \\
0 & 1 & -2
\end{array}\right) \simeq\left(\begin{array}{ccc}
\mathbf{1} & 2 & -1 \\
0 & \mathbf{1} & -2 \\
0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Now, the first two columns have pivots, the last one is pivot-free. Hence, the third vector is a linear combinations of the first two, and the set is not linearly independent. Indeed, we can write

$$
\vec{v}_{3}=(-1,4,3)=3 \vec{v}_{1}-2 \vec{v}_{2}=3(1,2,1)-2(2,1,0)
$$

PROBLEM 5.

a) Take

$$
\mathbb{A}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

b) Take

$$
\mathbb{A}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Then

$$
\mathbb{A}^{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and

$$
\mathbb{A}^{3}=\mathbb{A}^{2} \cdot \mathbb{A}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)=\mathbb{O}_{3}
$$

