Mathematics 314

Exam #1

MATHEMATICS – 314 Section 001

NAME: _____

SSN: _____

1		
2		
3		
4		

TOTAL_____

1. (30 pts.) Solve the following linear system

x_1	—	$2x_2$	+	x_3	—	x_4	+	$x_5 = 4$
$2x_1$	_	$3x_2$	+	$2x_3$	_	$3x_4$	+	$2x_5 = 7$
$3x_1$	_	$5x_2$	+	$3x_3$	_	$4x_4$	+	$3x_5 = 11.$

2. (30 pts.) Let

$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 1 \\ 4 & -6 & 4 \\ 3 & -5 & 3 \end{pmatrix}.$$

(a) Write down a basis for the null space of ${\bf A}.$

(b) What are the nullity and the rank of $\mathbf{A}?$

3. (30 pts.)

a) Compute \mathbb{A}^{-1} by Gauss-Jordan reduction on $(\mathbb{A}|\mathbb{I}_3)$, where

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

b) Write both A and A^{-1} as a product of two elementary row matrices.

4. (30 pts.) Consider the following three vectors in \mathbb{R}^3

$$\vec{v}_1 = (1, 2, 1), \quad \vec{v}_2 = (2, 1, 0), \quad \vec{v}_3 = (-1, 4, 3).$$

Determine if the set of these three vectors is linearly independent.

5. (20 bonus points; no partial credit on the bonus problem)

a) Write down a non-zero 2×2 matrix \mathbb{A} such that $\mathbb{A}^2 = \mathbb{O}_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

b) Write down a non-zero 3×3 matrix \mathbb{A} such that $\mathbb{A}^2 \neq \mathbb{O}_3$ but $\mathbb{A}^3 = \mathbb{O}_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

SOLUTIONS

PROBLEM 1.

The partition matrix for this system is

$$\begin{split} [\mathbf{A}|\vec{b}] &= \begin{bmatrix} 1 & -2 & 1 & -1 & 1 & | & 4 \\ 2 & -3 & 2 & -3 & 2 & | & 7 \\ 3 & -5 & 3 & -4 & 3 & | & 11 \end{bmatrix} \simeq \begin{bmatrix} 1 & -2 & 1 & -1 & 1 & | & 4 \\ 0 & 1 & 0 & -1 & 0 & | & -1 \\ 0 & 1 & 0 & -1 & 0 & | & -1 \end{bmatrix} \simeq \\ &\simeq \begin{bmatrix} 1 & -2 & 1 & -1 & 1 & | & 4 \\ 0 & 1 & 0 & -1 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \simeq \begin{bmatrix} 1 & 0 & 1 & -3 & 1 & | & 2 \\ 0 & 1 & 0 & -1 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} . \end{split}$$

The system is clearly consistent. There are pivots in first two columns; columns number 3 through 5 are pivot-free. Hence, there is a three-parameter family of solutions. We can introduce our free parameters as follows

$$x_5 = r, \qquad x_4 = t, \qquad x_3 = s.$$

Then the first two equations of the reduced system give

$$x_1 = -x_3 + 3x_4 - x_5 + 2 = 2 - s + 3t - r,$$
 $x_2 = x_4 - 1 = -1 + t.$

We can write

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 2+3t-s-r \\ -1+t \\ s \\ t \\ r \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 3 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + r \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

PROBLEM 2.

(a) The null space of \mathbf{A} is the space of solutions of the corresponding homogeneous linear system. We get

$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -3 & 2 \\ 3 & -5 & 3 \end{pmatrix} \simeq \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \simeq \begin{pmatrix} \mathbf{1} & 0 & 1 \\ 0 & \mathbf{1} & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

There are pivots in first two columns; column number 3 is pivot-free. Hence, there is a one-parameter family of solutions. We can introduce our free parameter as follows

$$x_3 = t.$$

Then the second equation says that $x_2 = 0$ and the first one that $x_1 = -t$. Hence, we have the general solution in the form

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -t \\ 0 \\ t \end{pmatrix} = t \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$$

This the basis for the null space is $\{(-1, 0, 1)\}$, the null space $N(\mathbf{A}) = \operatorname{span}(\{-1, 0, 1)\})$.

(b) As nullity of \mathbf{A} equals 1, rank of \mathbf{A} must also equal to 2 so that the sum of rank and nullity adds up to 3.

PROBLEM 3.

We reduce the matrix \mathbbm{A} in two steps:

$$\mathbb{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \simeq \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \simeq \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

with the same two operations applied to the identity

$$\mathbb{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \simeq \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \simeq \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} = \mathbb{A}^{-1}$$

The two elementary matrices responsible for these two operations (in order) are

$$\mathbb{E}_{1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \mathbb{E}_{1}^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
$$\mathbb{E}_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \mathbb{E}_{1}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

b) Now

$$\mathbb{A}^{-1} = \mathbb{E}_2 \cdot \mathbb{E}_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
$$\mathbb{A} = \mathbb{E}_1^{-1} \cdot \mathbb{E}_2^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

PROBLEM 4.

Consider the following 3×3 matrix $[\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3]$, where all three vectors are considered as the column vectors. We get

$$\begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \ \vec{v}_3 \end{bmatrix} = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 1 & 4 \\ 1 & 0 & 3 \end{pmatrix} \simeq \begin{pmatrix} 1 & 2 & -1 \\ 0 & -3 & 6 \\ 0 & -2 & 4 \end{pmatrix} \simeq \\ \simeq \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & -2 \\ 0 & 1 & -2 \end{pmatrix} \simeq \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Now, the first two columns have pivots, the last one is pivot-free. Hence, the third vector is a linear combinations of the first two, and the set is **not** linearly independent. Indeed, we can write

$$\vec{v}_3 = (-1, 4, 3) = 3\vec{v}_1 - 2\vec{v}_2 = 3(1, 2, 1) - 2(2, 1, 0).$$

PROBLEM 5.

a) Take

$$\mathbb{A} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

b) Take

$$\mathbb{A} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Then

$$\mathbb{A}^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

and

$$\mathbb{A}^{3} = \mathbb{A}^{2} \cdot \mathbb{A} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \mathbb{O}_{3}.$$