MATHEMATICS 180

NAME		
DATE		
1	_	
2	_	
3	_	
4	_	
5	_	
TOTAL	_	

Problem 1. (20 pts.) Compute the derivatives of the following functions:

a)
$$y(x) = x^5 + e^{5x} + x^e$$
,

b)
$$y(x) = xe^x$$
,

c)
$$y(x) = \ln(x^2 + 1)$$
,

d)
$$y(x) = e^{-2x^2}$$

d)
$$y(x) = \frac{x}{\ln x}$$

a) Compute y'(x), and find all critical points. Determine which are maxima and which are minima.

b) Find y''(x), and determine the intervals where the function is concave up and the intervals the function is concave down.

c) What is the limit of y(x) when $x \to \infty$ and $x \to -\infty$?

d) Graph y(x).

Problem 3 . (20 pts.) The population of Austin, Texas, was 200 thousand in 1980. In 1990, it was 400 thousand. Assuming the exponential model:			
a) Find the value k , and write the function. Assume $P_0 = 200$.			
b) Based on this model estimate the population of Austin in the year 2010.			
c) What year would the population reach 2 million?			

Problem 4. (20 Pt's) Compute the following integrals

a)
$$\int \frac{x^3+1}{x} dx$$

b)
$$\int_0^1 3e^{-2t} dt$$

c)
$$\int xe^{-x^2}dx$$
 (use substitution)

d)
$$\int \frac{\ln x}{x} dx$$
 (use substitution)

e)
$$\int_1^3 (x^2 - x^3) dx$$

Problem 5 (20 pts.) Nina has a possibility of opening one of two accounts: first one is at 5% interest compounded annually, second - at 4.9% compounded continuously. Which one should she choose if she wants to invest \$5000 for 6 years?