TOTAL____

MATHEMATICS 180 - Section 005

NAME	
DATE	
1	
2	
3	
4	

- 1.(20 pts.) Let $f(x) = 2x^3$. Consider the point P = (1, 2) on the graph of f(x).
- a) Find the equation of the line L tangent to f(x) at P.

b) Find points on the graph of f(x) at which the tangent line has slope m = 6. Write down the equations of the tangent lines at these points.

2. (30 pts.) Compute the following

a)
$$y(x) = (x+1)^3 - \frac{1}{x^2}$$
, $y'(x) =$

b)
$$\frac{d}{dx} \left(\sqrt[3]{x^2} \cdot \sqrt[3]{x^4} \right) =$$

c)
$$y(x) = (x^2 + 1)^4$$
, $y'(x) =$

d)
$$y(x) = \frac{4}{\sqrt{x^2+2}}, \quad y'(x) =$$

e)
$$\frac{d}{dx}(2x^2-3)|_{x=5}$$

f)
$$f(x) = a^2x^2 + 2b^3x + c^4.$$

$$\frac{d}{dx}f(x) =$$

$$\frac{d^2}{dx^2}f(x) =$$

3. (30 pts.) Compute the following

a)
$$f(P) = (P+1)^5$$
.
$$\frac{d^2}{dP^2}f(P) =$$

b)
$$\frac{d^2}{dx^2}(x^3 - x - 1) \mid_{x=2} =$$

c)
$$f(x) = (\sqrt{x} + 1)^{3/2}$$
.
 $f'(x) \mid_{x=4} =$

d)
$$f(x) = x^{10}$$
.
$$\frac{d^3}{dx^3} f(x) =$$

e)
$$\lim_{x \to 4} \frac{x^2 - 16}{4 + x} =$$

f)
$$\lim_{x \to 2} \sqrt[3]{x^3 + 19} =$$

- 4.(20 pts.) Let $f(x) = \frac{3}{x}$. a) Compute f(1+h) f(1),

$$f(1+h) - f(1) =$$

b) Compute the difference quotient $\frac{f(1+h)-f(1)}{h}$ and simplify,

$$\frac{f(1+h)-f(1)}{h} =$$

c) Compute the limit in b) when $h \to 0$, that is

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} =$$