Problem 1. Suppose a is rational and b is irrational. Prove that a + b and ab are both irrational.

Proof: (a+b) Suppose $a \in \mathbb{Q}$ and $b \in \mathbb{R} \setminus \mathbb{Q}$. Further suppose $a = \frac{p}{q}$ with $p, q \in \mathbb{Z}$, $q \neq 0$. We proceed by contradiction. Suppose that $a+b \in \mathbb{Q}$. By definition that means that $a+b=\frac{n}{m}$ for some integers $n, m \in \mathbb{Z}, m \neq 0$. But then we have

$$b = \frac{n}{m} - \frac{p}{q} = \frac{nq - mp}{mq}.$$

Since both $nq - mp, mq \in \mathbb{Z}, mq \neq 0$ this means that b is rational. This contradict the hypothesis.

Proof: (ab) Note that this second statement is **not true as stated**. For example, $a=0,\ b=\sqrt{2}$, and ab=0 shows that it is false because $0\in\mathbb{Q},\sqrt{2}\in\mathbb{R}\setminus\mathbb{Q}$ but their product iz zero which is rational. However, the statement is true if we assume that $a\neq 0$. Congratulations if you were able to notice that!

The proof is almost identical to the one for the sum. Suppose $a \in \mathbb{Q}$ and $b \in \mathbb{R} \setminus \mathbb{Q}$. Further suppose $a = \frac{p}{q}$ with $p, q \in \mathbb{Z}$, $q \neq 0$. Since $a \neq 0$ this means that $p \neq 0$ as well. We proceed by contradiction. Suppose that $ab \in \mathbb{Q}$. By definition, that means that $ab = \frac{n}{m}$ for some integers $n, m \in \mathbb{Z}, m \neq 0$. But then we have

$$b = \frac{n}{m} \cdot \frac{q}{p} = \frac{nq}{mp}.$$

Since both $nq, mp \in \mathbb{Z}, mp \neq 0$ this means that b is rational. This contradict the hypothesis.

Problem 2. Suppose $A \cap B = A$. Determine $A \cup B = ?$

Note that, by definition of the intersection $A \cap B$, for any two sets we have

$$A \cap B \subseteq A$$
, $A \cap B \subseteq B$.

Since $A \cap B = A$ the second inclusion becomes $A \subseteq B$. But if A is a subset of B then $A \cup B = B$.

Problem 3. Determine whether or not each of the binary relations \mathcal{R} is reflexive symmetric, antisymmetric, or transitive:

a)
$$A = \{1, 2\}, \mathcal{R} = \{(1, 2)\}.$$

not reflexive (does not contain (1,1)), not symmetric (contains (1,2) but not (2,1)), antisymmetric and transitive (any 1-element relation is always antisymmetric and transitive)

b)
$$A = \{1, 2, 3, 4\}, \mathcal{R} = \{(1, 1), (1, 2), (2, 1), (3, 4)\}.$$

not reflexive (does not contain (2,2)), not symmetric (does not contain (4,3) while it does contain (3,4)), not antisymmetric (contains the two pairs (1,2),(2,1) whith $2 \neq 1$), transitive

c) $A = \mathbb{Z}, (a, b) \in \mathcal{R}$ if and only if $ab \geq 0$.

reflexive (because $a^2 \ge 0$ for all $a \in \mathbb{R}$), symmetric (because $ab \ge 0$ if and only if $ba \ge 0$), not antisymmetric (because (1,2) and (2,1) are both in \mathbb{R}), not transitive (becasue if $(-1) \cdot 0 \ge 0$ and $0 \cdot 1 \ge 0$ but $(-1) \cdot 1$ is negative).

d) $A = \mathbb{R}$, $(a, b) \in \mathcal{R}$ if and only if $a^2 = b^2$.

reflexive because $((a,a) \in \mathcal{R} \ (a^2 = a^2)$ for all $a \in \mathbb{R}$), symmetric (because $(a,b) \in \mathcal{R}$ is true if and only if $(b,a) \in \mathcal{R} \ (a^2 = b^2)$ is the same as $b^2 = a^2$), transitive (because $a^2 = b^2$ and $b^2 = c^2$ implies that $a^2 = c^2$). This is an equivalence relation. The equivalence class of 0 is $[0] = \{0\}$ and equivalence class of every other $a \in \mathbb{R}$ is $[a] = \{-a, +a\}$. The quotient set can be identified with the interval $[0, \infty)$.

Problem 4. Let $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. For $a, b \in A$ define $a \sim b$ if ab is a perfect square.

a) List ordered pairs of this relation.

Each element of A is in relation with itself (relation is reflexive) so we have all the diagonal elements (1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),(8,8),(9,9) in " \sim " $\subseteq A\times A$. Since $1\sim 4\sim 9$, and $2\sim 8$ we have (1,4),(4,1),(1,9),(9,1),(4,9),(9,4) and (2,8),(8,2) in as well. By inspection, it is easy to see that this is all.

b) For each $a \in A$ find the $[a] \equiv \bar{a} = \{x \in A \mid x \sim a\}$

From part (a) we get $[1] = [4] = [9] = \{1, 4, 9\}$ and $[2] = [8] = \{2, 8\}$, with $[3] = \{3\}$, $[5] = \{5\}$, $[6] = \{6\}$, $[7] = \{7\}$, for all the others.

c) Explain why \sim is an equivalence relation on A.

It is reflexive as a^2 is a perfect square. It is symmetric as ab being a perfect square is equivalent to ba being also one. It is also transitive which is obvious by inspection.

Note: This relation is an equivalence realtion not just on A but on \mathbb{N} as well. If $a \cdot b = k^2$ and $b \cdot c = l^2$ then, in fact $a \cdot c = \frac{k^2 l^2}{b^2} = (kl/b)^2$. One only has to show that b divides the product kl. We will prove it in class when we discuss factorization of integers.

Problem 5. Draw the Hesse diagram for the following partial order:

$$(\{\{a\},\{a,b\},\{c\},\{a,c\},\{a,b,c\},\{a,b,d\}\},\subseteq).$$

Problem 6. Let $f: A \to A$ be defined by $f(x) = x^2 + 2$.

a) Let $A = \mathbb{Z}$. Determine if f is injective and surjective.

f(-1) = f(1) = 3 so f is not injective. f(x) = 4 has no solutions for $x \in \mathbb{Z}$ so that f is not surjective.

b) Repeat part (a) for $A = \mathbb{R}$.

f(-1) = f(1) = 3 so f is not injective. f(x) = 0 has no solutions for $x \in \mathbb{Z}$ so that f is not surjective.

Problem 7. Let $X = \{a, b\}$ and $Y = \{1, 2, 3\}$.

a) List all the functions from X to Y.

$$f_1 = \{(a,1), (b,1)\},$$
 $f_2 = \{(a,1), (b,2)\},$ $f_3 = \{(a,1), (b,3)\},$
 $f_4 = \{(a,2), (b,1)\},$ $f_5 = \{(a,2), (b,2)\},$ $f_6 = \{(a,2), (b,3)\},$
 $f_7 = \{(a,3), (b,1)\},$ $f_8 = \{(a,3), (b,2)\},$ $f_9 = \{(a,3), (b,3)\}.$

b) List all the functions from Y to X.

$$g_1 = \{(1, a), (2, a), (3, a)\}, \qquad g_2 = \{(1, a), (2, a), (3, b)\},$$

$$g_3 = \{(1, a), (2, b), (3, a)\}, \qquad g_4 = \{(1, a), (2, b), (3, b)\},$$

$$g_5 = \{(1, b), (2, a), (3, a)\}, \qquad g_6 = \{(1, b), (2, a), (3, b)\},$$

$$g_7 = \{(1, b), (2, b), (3, a)\}, \qquad g_8 = \{(1, b), (2, b), (3, b)\}.$$

c) List all the injective functions from X to Y.

 $f_2, f_3, f_4, f_6, f_7, f_8$ are all injective while f_1, f_5, f_9 are not.

d) List all the surjective functions from X to Y.

There are none.

Problem 8. Let $S = \{1, 2, 3, 4, 5\}$, and let $f, g, h: S \to S$ be the function defined by

$$f = \{(1,2), (2,1), (3,4), (4,5), (5,3)\},$$

$$g = \{(1,3), (2,5), (3,1), (4,2), (5,4)\},$$

$$h = \{(1,2), (2,2), (3,4), (4,3), (5,1)\}.$$

a) Find $f \circ g$ and $g \circ f$.

$$f \circ g = \{(1,4), (2,3), (3,2), (4,1), (5,5)\},\$$
$$g \circ f = \{(1,5), (2,3), (3,2), (4,4), (5,1)\}.$$

b) Find f^{-1} , g^{-1} , and h^{-1} (if they exist).

$$f^{-1} = \{(2,1), (1,2), (4,3), (5,4), (3,5)\},\$$
$$q^{-1} = \{(3,1), (5,2), (1,3), (2,4), (4,5)\},\$$

 h^{-1} does not exist as h is not injective (h(1) = h(2) = 2).

c) Show that $(f \circ g)^{-1} = g^{-1} \circ f^{-1} \neq f^{-1} \circ g^{-1}$.

$$(f \circ g)^{-1} = \{(4,1), (3,2), (2,3), (1,4), (5,5)\},$$

$$g^{-1} \circ f^{-1} = \{(1,4), (2,3), (3,2), (4,1), (5,5)\},$$

$$f^{-1} \circ g^{-1} = \{(1,5), (2,3), (3,2), (4,4), (5,1)\}.$$

Problem 9.

- a) Find the one-to-one correspondence between the intervals $(1, \infty)$ and $(3, \infty)$ Take f(x) = x + 2. This is injective and surjective map $f: (1, \infty) \to (3, \infty)$ as desired.
- b) Find the one-to-one correspondence between the intervals (0,1) and (a,b).

We will construct a liner function $f(x) = \alpha x + \beta$ that does the job. How should we choose the constants? Well, $f(0) = a = \beta$ and $f(1) = b = \alpha + \beta$. Hence, $\alpha = b - a$. So take f(x) = (b-a)x+a. This is a liner function with non-zero slope. Any such function is injective. But f((0,1)) = (a,b) by our choice of the constants so it must also be surjective.

Problem 10.

a) Write the number 1001 in base b = 2, 8.

Since $1001 = 2^9 + 2^8 + 2^7 + 2^6 + 2^5 + 2^3 + 1 = 512 + 256 + 128 + 64 + 32 + 8 + 1$ we get $1001 = (1111101001)_2$. Since $1001 = 8^3 + 7 \cdot 8^2 + 5 \cdot 8 + 1$ we get $1001 = (1751)_8$.

b) Suppose in base 12 we use A to denote 10 and B to denote 11. What is 1BBA? $(1BBA)_{12} = 10 + 11 \cdot (12) + 11 \cdot (12)^2 + (12)^3 = 3,454$.