Problem 1. Suppose a is rational and b is irrational. Prove that a + b and ab are both irrational.

Problem 2. Suppose $A \cap B = A$. Determine $A \cup B = ?$

Problem 3. Determine whether or not each of the binary relations \mathcal{R} is reflexive symmetric, antisymmetric, or transitive:

- a) $A = \{1, 2\}, \mathcal{R} = \{(1, 2)\}.$
- b) $A = \{1, 2, 3, 4\}, \mathcal{R} = \{(1, 1), (1, 2), (2, 1), (3, 4)\}.$
- c) $A = \mathbb{Z}, (a, b) \in \mathcal{R}$ if and only if $ab \geq 0$.
- d) $A = \mathbb{R}$, $(a, b) \in \mathcal{R}$ if and only if $a^2 = b^2$.

Problem 4. Let $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. For $a, b \in A$ define $a \sim b$ if ab is a perfect square (ie., it is a square of a natural number).

- a) List ordered pairs of this relation.
- b) For each $a \in A$ find the $\bar{a} = \{x \in A \mid x \sim a\}$.
- c) Explain why \sim is an equivalence relation on A.

Problem 5. Draw the Hesse diagram for the following partial order:

$$(\{\{a\},\{a,b\},\{c\},\{a,c\},\{a,b,c\},\{a,b,d\}\},\subseteq).$$

Problem 6. Let $f: A \to A$ be defined by $f(x) = x^2 + 2$.

- a) Let $A = \mathbb{Z}$. Determine if f is injective and surjective.
- b) Repeat part (a) for $A = \mathbb{R}$.

Problem 7. Let $X = \{a, b\}$ and $Y = \{1, 2, 3\}$.

- a) List all the functions from X to Y.
- b) List all the functions from Y to X.
- c) List all the injective functions from X to Y.
- d) List all the surjective functions from X to Y.

Problem 8. Let $S = \{1, 2, 3, 4, 5\}$, and let $f, g, h: S \to S$ be the function defined by

$$f = \{(1,2), (2,1), (3,4), (4,5), (5,3)\},\$$

$$g = \{(1,3), (2,5), (3,1), (4,2), (5,4)\},\$$

$$h = \{(1,2), (2,2), (3,4), (4,3), (5,1)\}.$$

a) Find $f \circ g$ and $g \circ f$.

- b) Find f^{-1} , g^{-1} , and h^{-1} (if they exist).
- c) Show that $(f \circ g)^{-1} = g^{-1} \circ f^{-1} \neq f^{-1} \circ g^{-1}$.

Problem 9.

- a) Find the one-to-one correspondence between the intervals $(1, \infty)$ and $(3, \infty)$.
- b) Find the one-to-one correspondence between the intervals (0,1) and (a,b).

Problem 10.

- a) Write the number 1001 in bases b = 2, 8.
- b) Suppose that in base 12 we use A to denote 10 and B to denote 11. What is the number 1BBA?