MATH327 – HOMEWORK SOLUTIONS HOMEWORK #5

Section 2.2: Problems 1, 4, 6, 8, 9 Section 2.3: Problems 3,4,13,17

Krzysztof Galicki

Problem 2.2.1.

- a) $f: \mathbb{Q} \to \mathbb{Q}$ defined by f(x) = 3x + 5 is clearly both injective and surjective. Hence, the inverse exists and it is $g(x) = \frac{1}{3}(x 5)$, where $g: \mathbb{Q} \to \mathbb{Q}$.
- b) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3 2$ is bijective. Hence, the inverse exists and it is $g(x) = (x+2)^{1/3}$, where $g: \mathbb{R} \to \mathbb{R}$.
- c) $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = x|x| is clearly injective and surjective. Hence, the inverse exists and it is

$$g(x) = \begin{cases} \sqrt{x} & \text{if } x \ge 0 \\ -\sqrt{-x} & \text{if } x \le 0, \end{cases}$$

where $g: \mathbb{R} \to \mathbb{R}$.

d) $\beta: (3/4, \infty) \to \mathbb{R}$ defined by $\beta(x) = \log_2(3x - 4)$ is bijective. Hence, the inverse exists and it is $g(x) = \frac{1}{3}(2^x + 4)$, where $g: \mathbb{R} \to (3/4, \infty)$.

Problem 2.2.4. Let $S = \{1, 2, 3, 4, 5\}$ and $T = \{1, 2, 3, 8, 9\}$ and define $f : S \to T$ and $g : S \to S$ by

$$f = \{(1,8), (3,9), (4,3), (2,1), (5,2)\},\$$
$$g = \{(1,2), (3,1), (2,2), (4,3), (5,2)\}.$$

a) $f \circ g : S \to T$ and we get f(g(1)) = f(2) = 1, f(g(2)) = f(2) = 1, f(g(3)) = f(1) = 8, f(g(4)) = f(3) = 9, f(g(5)) = f(2) = 1. Hence,

$$f \circ g = \{(1,1), (2,1), (3,8), (4,9), (5,1)\}.$$

 $g \circ f$ is not defined since the domain of g and the range of f are different. $f \circ f$ is not defined for the same reason. Finally, $g \circ g : S \to S$ and we get g(g(1)) = g(2) = 2, g(g(2)) = g(2) = 2, g(g(3)) = g(1) = 2, g(g(4)) = g(3) = 1, g(g(5)) = g(2) = 2. Hence,

$$g \circ g = \{(1,2), (2,2), (3,2), (4,1), (5,2)\}.$$

- b) f is both injective and surjective. g is neither: g(1) = g(2) and $\{4, 5\}$ are not in its range.
- c) Since f is both injective and surjective, its inverse exists and

$$f^{-1} = \{(8,1), (9,3), (3,4), (1,2), (2,5)\}.$$

d) Since g is not injective it does not have an inverse.

Problem 2.2.6. Let $S = \{1, 2, 3, 4\}$ and $f, g : S \to S$ be

$$f = \{(1,3), (2,2), (3,4), (4,1)\},\$$

$$g = \{(1,4), (2,3), (3,1), (4,2)\}.$$

Both functions are bijective and

$$f^{-1} = \{(3,1), (2,2), (4,3), (1,4)\},\$$
$$g^{-1} = \{(4,1), (3,2), (1,3), (2,4)\}.$$

We have

a)
$$g^{-1} \circ f \circ g(1) = g^{-1} \circ f(4) = g^{-1}(1) = 3, g^{-1} \circ f \circ g(2) = g^{-1} \circ f(3) = g^{-1}(4) = 1,$$

 $g^{-1} \circ f \circ g(3) = g^{-1} \circ f(1) = g^{-1}(3) = 2, g^{-1} \circ f \circ g(4) = g^{-1} \circ f(2) = g^{-1}(2) = 4,$
 $g^{-1} \circ f \circ g = \{(1,3),(2,1),(3,2),(4,4)\}.$

- b) $f \circ g^{-1} \circ g = f$.
- c) $g \circ f \circ g^{-1}(1) = g \circ f(3) = g(4) = 2$, $g \circ f \circ g^{-1}(2) = g \circ f(4) = g(1) = 4$, $g \circ f \circ g^{-1}(3) = g \circ f(2) = g(2) = 3$, $g \circ f \circ g^{-1}(4) = g \circ f(1) = g(3) = 1$, $g \circ f \circ g^{-1} = \{(1, 2), (2, 4), (3, 3), (4, 1)\}$.
- $d) g \circ g^{-1} \circ f = f.$
- e) We have

$$\begin{split} f^{-1} \circ g^{-1} \circ f \circ g(1) &= f^{-1} \circ g^{-1} \circ f(4) = f^{-1} \circ g^{-1}(1) = f^{-1}(3) = 1, \\ f^{-1} \circ g^{-1} \circ f \circ g(2) &= f^{-1} \circ g^{-1} \circ f(3) = f^{-1} \circ g^{-1}(4) = f^{-1}(1) = 4, \\ f^{-1} \circ g^{-1} \circ f \circ g(3) &= f^{-1} \circ g^{-1} \circ f(1) = f^{-1} \circ g^{-1}(3) = f^{-1}(2) = 2, \\ f^{-1} \circ g^{-1} \circ f \circ g(4) &= f^{-1} \circ g^{-1} \circ f(2) = f^{-1} \circ g^{-1}(2) = f^{-1}(4) = 3, \\ f^{-1} \circ g^{-1} \circ f \circ g &= \{(1,1), (2,4), (3,2), (4,3)\}. \end{split}$$

Problem 2.2.8. Let $f, g, h : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = x + 2$$
, $g(x) = \frac{1}{x^2 + 1}$, $h(x) = 3$.

We have

$$f^{-1}(x) = x - 2$$
.

Then

$$g \circ f(x) = \frac{1}{(x+2)^2 + 1},$$

$$f \circ g(x) = \frac{1}{x^2 + 1} + 2,$$

$$h \circ g \circ f(x) = 3,$$

$$g \circ h \circ f(x) = \frac{1}{10},$$

$$g \circ f^{-1} \circ f(x) = g(x),$$

$$f^{-1} \circ g \circ f(x) = \frac{1}{(x+2)^2 + 1} - 2.$$

Problem 2.2.9. Let $f, g, h : \mathbb{R}^+ \to \mathbb{R}$ be

$$f(x) = \frac{x}{x+1}$$
, $g(x) = \frac{1}{x}$, $h(x) = x+1$.

Then

$$g \circ f(x) = \frac{x+1}{x},$$

$$f \circ g(x) = \frac{1}{x+1},$$

$$h \circ g \circ f(x) = \frac{x+1}{x} + 1,$$

$$f \circ g(x) \circ h = \frac{1}{x+2}.$$

Problem 2.3.3.

- a) $f = \{(x, 14), (y, -3), (\{a, b, c\}, t)\}$ is one of the 6 examples of such correspondences.
- b) $f: 2\mathbb{Z} \to 17\mathbb{Z}$, f(2k) = 17k, where k is any integer.
- c) $f: \mathbb{N} \times \mathbb{N} \to \{a+bi \in \mathbb{C} \mid a, b \in \mathbb{N}\}$ defined by f(a,b) = a+bi.
- d) $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{Z}$, where

$$f(a,b) = \begin{cases} (a,k-1) & \text{if } b = 2k, \quad k \in \mathbb{N} \\ (a,-k) & \text{if } b = 2k-1, \quad k \in \mathbb{N} \end{cases}$$

e) $f: \mathbb{N} \to \{m/n \mid m \in \mathbb{N}, n = 1, 2\}$, where

$$f(a) = \begin{cases} k & \text{if } a = 2k, \ k \in \mathbb{N} \\ k/2 & \text{if } a = 2k - 1, \ k \in \mathbb{N} \end{cases}$$

Problem 2.3.4. This is false as shown by the example $2\mathbb{Z} \subset \mathbb{Z}$. The inclusion is proper but the sets have the same cardinality. The following theorems are true.

Theorem 1: Let $A \subsetneq B$ and let B be finite, that is cardinality $|B| < \infty$. Then |A| < |B|.

Proof: Since B is finite we can identify B with an N-element set $\{1, 2, ..., N\}$ for some N and then |B| = N. Since A is a proper subset of B, A will be in one-to-one correspondence with a proper subset of $\{1, 2, ..., N\}$ and therefore |A| < N. This proves the theorem. \blacksquare

Theorem 2: Let $A \subseteq B$. Then $|A| \leq |B|$.

Proof: The inclusion $A \subseteq B$ is an injective map (but not surjective, unless A = B). By definition, $|A| \leq |B|$ if there exists any injective function $f: A \to B$.

Problem 2.3.13.

- a) The set $S = \{x \in \mathbb{R} \mid 1 < x < 2\}$ is uncountable as it is in one-to-one correspondence with the open interval (0,1), via the function f(x) = x 1. The latter is uncountable via the diagonal argument.
- b) The set $S = \{x \in \mathbb{Q} \mid 1 < x < 2\}$ countably infinite. It is infinite as $1 + \frac{1}{n+1} \in S$ for any $n \in \mathbb{N}$. On the other hand S is a proper subset of \mathbb{Q} , so it must be countable by the fact that \mathbb{Q} is countable (see Theorem 2 above).
- c) The set $S = \{m/n \mid m, n \in \mathbb{N}, m < 100, 5 < n < 105\}$ is finite as $|S| \le 99 \cdot 100 = 9900$.
- d) The set $S = \{m/n \mid m, n \in \mathbb{Z}, m < 100, 5 < n < 105\}$ is infinite as, every negative integer is an element of S (simply take m = -100k, n = 100). Furthermore, S is a proper subset of \mathbb{Q} , so it must be countable by the fact that \mathbb{Q} is countable.
- e) Note that $\{a+ib\} \in \mathbb{C} \mid a,b \in \mathbb{N}\} = \mathbb{N} \times \mathbb{N}$ and the latter set is countable.
- f) The set $S = \{(a,b) \in \mathbb{Q} \times \mathbb{Q} \mid a+b=1\}$ is in one-to-one correspondence with the set \mathbb{Q} via mapping f(a,b) = a. Hence it is infinitely countable.
- g) The set $S = \{(a,b) \in \mathbb{R} \times \mathbb{R} \mid b = \sqrt{1-a^2}\}$ is in one-to-one correspondence with the set (-1,1), via the map f(a,b) = a. On the other hand, the open interval (-1,1) is in is in one-to-one correspondence with the open interval (0,1) via the map $g(x) = \frac{x+1}{2}$. Hence, S is uncountable.

Problem 2.3.17. Theorem: If A is countable so is $A \times A$.

Proof: By definition, if A is countable then either A is finite, or there exists a bijection $f: A \to \mathbb{N}$. in the first case the Cartesian product is also finite, hence, countable. In the second case, observe that the map $F: A \times A \to \mathbb{N} \times \mathbb{N}$, defined by

$$F(a_1, a_2) = (f(a_1), f(a_2))$$

is also a bijection. Hence,

$$|A \times A| = |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}| = \aleph_0.\blacksquare$$