MATH327 - HOMEWORK SOLUTIONS
HOMEWORK #5

Section 2.2: Problems 1, 4, 6, 8, 9
Section 2.3: Problems 3,4,13,17
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Problem 2.2.1.

a) f:Q — Q defined by f(x) = 3z + 5 is clearly both injective and surjective. Hence,

the inverse exists and it is g(z) = £(z — 5), where g: Q — Q.

b) f:R — R defined by f(z) = 23 — 2 is bijective. Hence, the inverse exists and it is
g(z) = (z +2)Y/3, where g: R = R

c¢) f: R — R defined by f(z) = z|z| is clearly injective and surjective. Hence, the

inverse exists and it is
JVx ifz>0
9(x) = { —/—x if £ <0,
where g : R — R.

d) B:(3/4,00) = R defined by ((z) = log,(3z —4) is bijective. Hence, the inverse exists
and it is g(z) = 3(2° +4), where g : R — (3/4,00).

Problem 2.2.4. Let S = {1,2,3,4,5} and T = {1,2,3,8,9} and define f : S — T and
g:S—Shby

a) fog:S =T and we get f(g(1)) = f(2) =1, f(9(2)) = f(2) = 1, f(9(3)) = f(1) =8,
flg(4) = f(3) =9, f(9(5)) = f(2) = 1. Hence,

fog= {(L 1)a (2’ 1)’ (3’8)’ (4’ 9)’ (5’ 1)}

go f is not defined since the domain of g and the range of f are different. fo f is not
defined for the same reason. Finally, gog : S — S and we get g(g9(1)) = ¢(2) = 2,

Ig{l(g(?)) =9(2) =2,9(g3) = 9(1) =2, 9(g(4) = 93) =1, g(g(5)) = g(2) = 2.
| gog=1{(1,2),(2,2),(3,2).(41),(5,2)}.

b) f is both injective and surjective. g is neither: g(1) = ¢(2) and {4, 5} are not in its
range.

c¢) Since f is both injective and surjective, its inverse exists and
f_l = {(& 1)’ (9’ 3)7 (3a 4)a (17 2); (2a 5)}

d) Since g is not injective it does not have an inverse.
Problem 2.2.6. Let S = {1,2,3,4} and f,g:S — S be

[ = {(L 3)’ (2’ 2)a (35 4)a (4a 1)}a

g = {(L 4)) (2’ 3)’ (37 1)7 (4’ 2)}



Both functions are bijective and
71 =1{(,1),(2,2),(4,:3), (1, 4)},
g_l = {(4’ 1)’ (3’ 2)’ (1’ 3)’ (2’ 4)}

We have

lofog(l)=glof(4)=g'(1)=3,9g ofog(2) =g tof(38)=g"'(4) =1,
g lofogB)=glof(1)=97'8)=2,9""0ofog(d) =g "o f(2)=g""(2) =4,

g_l ofog= {(1,3), (2, 1)1 (372)7 (4’4)}'

¢c)gofoyg (1) =gof(3) =94 =29 fog '(2) = go f4) = g(1) = 4,
gOfog‘1(3)—g<>f()—g()=3g ofogt(4)=gof(1)=g(3) =1,

gofo g_l = {(172)7 (274)7 (373)7 (4v 1)}

d) gog~ltof=f.
e) We have
fTrog o fog(l)=frog o f(4)=ftogT (1) =

f
floglofog2)=flog o f(3)=fog7 (4 =f1(1)=4
floglofogB)=ftog o f(l)=flog7'(B)=f1(2) =2,
flogtofogd)=ftog o f(2)=ftog7!(2)=fT1(4) =3
J7hogT o fog={(11),(2,4),(3,2),(4,3)}

Problem 2.2.8. Let f,g,h: R — R be defined by

1
We have
f@) =2 -2
Then
1



-1 . .
f=egoflz)= R LN
Problem 2.2.9. Let f,g,h: RT — R be
T 1
fa)= 2 gl =L b=z

Then 41
I
gOf(il?)— T I
1
ng<.’E)—?,
1
hogo flz)= 2 41,
xr
1

Problem 2.3.3.
a) f={(z,14), (y,—3), ({a,b,c},t)} is one of the 6 examples of such correspondences.

b) f:2Z — 17Z, f(2k) = 17k, where k is any integer.
¢) f:NxN—={a+biecC | a,be N} defined by f(a,b) = a + bi.

d) f:NxN— N xZ, where

_ f(a,k—1) ifb=2k, keN
f(a’b)_{(a,—k) ifb=2k—1, keN

e) f:N—={m/n | meNmn=1,2}, where

fay= [k ifa=2k keN
YZVk/2 ifa=2k—1, keN

Problem 2.3.4. This is false as shown by the example 2Z C Z. The inclusion is proper
but the sets have the same cardinality. The following theorems are true.



Theorem 1: Let A ¢ B and let B be finite, that is cardinality |B| < oco. Then
Al < [B].

Proof. Since B is finite we can identify B with an N-element set {1,2,..., N} for
some N and then |B| = N. Since A is a proper subset of B, A will be in one-to-one
correspondence with a proper subset of {1,2,..., N} and therefore |A| < N. This proves
the theorem. §

Theorem 2: Let A C B. Then |A| < |B].

Proof. The inclusion A C B is an injective map (but not surjective, unless A = B).
By definition, |A| < |B| if there exists any injective function f: A — B. i

Problem 2.3.13.

a) Theset S ={z € R | 1 <z < 2} is uncountable as it is in one-to-one correspondence
with the open interval (0, 1), via the function f(xz) = z — 1. The latter is uncountable
via the diagonal argument.

b) Theset S={z € Q | 1<z <2} countably infinite. It is infinite as 1+ %H € S for
any n € N. On the other hand S is a proper subset of Q, so it must be countable by
the fact that Q is countable (see Theorem 2 above).

¢) Theset S={m/n | m,neN, m <100, 5< n < 105} is finite as |S| < 99-100 =
9900.

d) Theset S ={m/n | m,n € Z, m <100, 5 < n < 105} is infinite as, every negative
integer is an element of S (simply take m = —100k,n = 100). Furthermore, S is a
proper subset of Q, so it must be countable by the fact that Q is countable.

e) Note that {a+ib) € C | a,b € N} =N x N and the latter set is countable.

f) The set S ={(a,b) € Q xQ |a+b =1} is in one-to-one correspondence with the set
Q via mapping f(a,b) = a. Hence it is infinitely countable.

g) Theset S ={(a,b) € RxR | b=+/1— a2} isin one-to-one correspondence with the
set (—1,1), via the map f(a,b) = a. On the other hand, the open interval (—1,1) is in
is in one-to-one correspondence with the open interval (0,1) via the map g(z) = Z£t.
Hence, S is uncountable.

Problem 2.3.17. Theorem: If A is countable so is 4 x A.

Proof: By definition, if A is countable then either A is finite, or there exists a bijection
f A — N. in the first case the Cartesian product is also finite, hence, countable. In the
second case, observe that the map F': A X A — N X N, defined by

F(a1,az2) = (f(a1), f(az))

is also a bijection. Hence,

Ax Al=|NxN =|N =X



