MATH327 – HOMEWORK SOLUTIONS HOMEWORK #4

Section 1.5: Problems 1, 2, 3, 5Section 2.1: Problems 1,4,7,9,10,14

Krzysztof Galicki

Problem 1.5.1.

- a) Yes, it is reflexive, antisymmetric, and transitive and therefore it is a partial order on \mathbb{R} . It is also a total order.
- b) No, as it is not reflexive. For example, it is not true that 2 < 2.
- c) (\mathbb{R}, \preceq) , where $a \preceq b$ means $a^2 \leq b^2$ is not a partial order as it is not antisymmetric. While $a \prec b$ and $b \prec a$ imply that $a^2 = b^2$, the latter does not mean that a = b.
- d) This relation is not antisymmetric. Consider (2,3) and (2,1). Clearly $(2,3) \leq (2,1)$ and $(2,1) \leq (2,3)$ but $(2,3) \neq (2,1)$.
- e) This is a partial order but not a total order. Consider, for example, (2,3) and (3,4). Neither $(2,3) \prec (3,4)$, nor $(3,4) \prec (2,3)$.
- f) This relation is not antisymmetric. Consider two words $w_1 = cat$ and $w_2 = pit$ (in this example the alphabet is the standard English alphabet). They have the same length so $w_1 \leq w_2$ and $w_2 \leq w_1$. But they are not the same words.

Problem 1.5.2.

- a) {1,10,100,1000,1001,101,1010,11,110,111}
- b) {1,11,111,110,10,101,1010,100,1001,1000}

Problem 1.5.3.

- a) $a \prec b \prec c \prec d$ (other follow by transitivity).
- b) $a \prec b$ and $c \prec d$.
- c) $a \prec b$, $a \prec d$, and $c \prec d$.
- d) $a \prec b$, $a \prec c$, and $a \prec d$.
- e) $a \prec d \prec e, b \prec e,$ and $b \prec c \prec f$ (other follow by transitivity).
- f) $a \prec f$, $g \prec f$, $d \prec b \prec c$, $d \prec h \prec i$, $\prec c$, $e \prec i$ (all the other relations follow by transitivity).

Problem 1.5.5.

b)

(b') The Hesse diagram for $(\mathcal{P}(\{a,b,c,d\}),\subseteq)$

(b) The Hesse diagram for $(\{\{a\},\{a,b\},\{a,c\},\{c,d\},\{a,b,c\},\{a,b,c,d\}\},\subseteq)$

Problem 2.1.1

- a) It is not a function as f(3) = 1 and f(3) = 3.
- b) It is not a function with domain $\{1,2,3,4\}$ as f(3) is not defined.
- c) Yes, it is a function.
- d) It is not a function as f(1) = 1 and f(1) = 2.
- e) Yes, it is a function.

Problem 2.1.4

- a) f(n) = 2n.
- b) f(n) = 1 + integer part of n/100.
- c) $f(n) = n \mod 3 + 1.$
- d) f(n) = n.

Problem 2.1.7

$$\{(1,-3),(3,1),(5,5),(2,5),(4,17)\}$$

The function is not 1-1 as f(5) = f(2).

Problem 2.1.9

- a) Write $x^2 = |x|^2$ and the rest follows from the definition $\sqrt{x^2} = \sqrt{|x|^2} = |x|$ (|x| is always non-negative).
- b) As both sides of this inequality are non-negative integers we can square it to get

$$|x+y| \le |x| + |y| \Leftrightarrow (x+y)^2 \le (|x|+|y|)^2 \Leftrightarrow x^2 + y^2 + 2xy \le x^2 + y^2 + 2|x||y| \Leftrightarrow xy \le |xy|.$$

The last inequality is obvious (you can verify by checking four cases of different sign of x and y).

Problem 2.1.10

- a) It is not 1-1 as g(1) = g(-1). Neither it is onto as $g(x) \ge 1$.
- b) It is not 1-1 as g(1) = g(-1) but now it is clearly onto as any natural number can be written as |x| + 1. Simply take all positive integers and the zero for x.

Problem 2.1.14 Write $f(x) = (x+7)^2 - 100$.

- a) 1-1 but not onto. f(n) is strictly increasing for $n \ge -7$, hence it must be 1-1. Also, there is no natural number n such that f(n) = -98. This would mean that $f(n) = (n+7)^2 100 = -98$ or $(n+7)^2 = 2$ which has no solutions in natural numbers.
- b) not 1-1 and not onto. To see this take f(-17) = f(-3) = 0, and observe that there is no integer such that f(m) = -98. This would mean that $f(m) = (m+7)^2 100 = -98$ or $(m+7)^2 = 2$ which has no integer solutions.
- c) not 1-1 but onto. Just draw this parabola in the XY-plane.