MATH327 - HOMEWORK SOLUTIONS
HOMEWORK #3

Section 1.3: Problems 1, 3, 4, 5
Section 1.4: Problems 2, 3, 5, 6, 15, 16
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Problem 1.3.1.

The Cartesian product S x B is a set of all ordered pairs (s, b), where s is any student
of the college and b is any book in the library. As an example we can consider the following
binary relation R C S x B

R ={(s,b) € Sx B | sread b}.

Problem 1.3.3.
a) not reflexive, not symmetric, not transitive.

b) reflexive, symmetric, but not transitive (here there is a slight problems as the word
friend is not well defined; other answers can be argued for).

c¢) not reflexive, not symmetric, but transitive.
d) reflexive, symmetric, and transitive.

e) not reflexive, not symmetric, not transitive.

Problem 1.3.4. A = {a,b,c,d}. We give 4 examples of binary relations R C A x A such
that each example has at least elements and is:

a) not reflexive and symmetric

| a b ¢ d
i + — — — —
a | r T
b | = xr
c | T = x
d | = z =

b) not symmetric and not antisymmetric

| a b ¢ d
— + — — — —
a | T T T
b | xr
c | T = x
d | = z =

¢) not symmetric but antisymmetric

| a b ¢ d
— + — — — —
a | r T
b | xr
c | x
d |



d) transitive

| a b ¢ d
— + — — — —
a | r T T
b | r
c | x
d | x

Problem 1.3.5. Let A = {1,2,3}. Below are some examples of binary relations with the
required properties. They are not unique.

a) {(1,2),(2,3), (1, 1)}.
b) {(1,1),(2,2),(3,3),(1,2),(2,3)}.

c) {1,2),(2, D}

d) {1,2),(2,3),(1,3)}.

e) {(1,1),(2,2),(3,3),(1,2),(2,1),(2,3), (3,2)}
f) {(1,1),(2,2),(3,3),(1,2),(2,3), (1,3)}.

g) {(1,1),(1,2),(2, 1)}

h) {(1,1),(2,2),(3,3)}

Problem 1.4.2.
a) R is clearly not reflexive as (2,2) ¢ R. It is not transitive either.
b) R is not symmetric as (2,3) € R but (3,2) ¢ R.
¢) R is not symmetric as (1,3) € R but (3,1) ¢ R.

Problem 1.4.3. This relations is the equality of elements

=7 = {(1, 1); (27 2)a (3a 3)7 (4a 4)7 (57 5)}

Problem 1.4.5. Let A = {V/3,-2,1/2,m,6,/12}.

43

a) define a relation “ ~” by a ~ b if a/b € Q. We show that this is an equivalence

relations:

1. Tt is reflexive: For any a € A we have a/a =1 and 1 € Q.

2. Tt is symmetric: If a/b is rational then so is b/a. (Note that A does not contain 0).
3. It is transitive: If a/b € Q and b/c € Q than the product § - g =2eQ

b) The equivalence classes here are the subsets

{-2,1/2,6}, {V3,V12}, {=}.



Actually, the fact that v/3 and 7 are not equivalent, or that ? is not rational is not
trivial. It follows from the fact that 7 is not an algebraic number (it is not a root of any
polynomial with integer coefficients).

Problem 1.4.6. Let A = N. Define

a~b if a’+0b iseven.

1. Tt is reflexive: For each a € N we have a? + a even.

2. It is symmetric: Suppose a ~ b. Then a? + b is even. But that means that either
both a and b are odd, or both a and b are even. In each case b?> + a must be even and,
hence, b ~ a.

3. It is transitive: If a ~ b and b ~ ¢ then a? + b is even and b? + ¢ is even. But then
a?+c=(a?+b)+ (b2 +c)— (b> +b) is a sum of three even numbers and hence even. The
parity of the first two follows from the hypothesis and the third is even by reflexivity of
the relation “~”.

Thus we have an equivalence relation. The equivalence classes are
1] =1{1,3,5,7,...}, [2]={2,4,6,8,...}

the odd numbers (all equivalent to 1) and the even numbers (all equivalent to 2).

Problem 1.4.15.
a) It is an equivalence relation.
1. Tt is reflexive: For any (a,b) € R? we have a+2b = a+2b and, hence (a,b) ~ (a,b).

2. It is symmetric: if (a,b) ~ (c,d) then a + 2b = ¢+ 2d. But then ¢+ 2d = a + 2b
which says that (c,d) ~ (a,b).

3. It is tramsitive: if (a,b) ~ (¢,d) and (¢,d) ~ (e, f) then a + 2b = ¢+ 2d and
¢+ 2d = e 4+ 2f which implies that a + 2b = e + 2f, hence, (a,b) ~ (e, f).

Here, the equivalence classes can be labeled by a real number A and an equivalence
class corresponding to A consists of all point on the line x + 2y = X in the XY -plane. We
can also denote it by [(—A, —2A).

b) It is an equivalence relation and the proof all all three properties is identical to the
one in (a). Here, the equivalence classes can be labeled by a real number A and an
equivalence class corresponding to A consists of all point on the hyperbola zy = A in
the XY-plane. We can also denote it by [(A, 1)]. The equivalence class [0, 1) consists
of the two axes.

c¢) This is not not equivalence relation as it is not reflexive. For example, it is not It is
not true that for any (a,b) we have (a,b) ~ (a,b), that is a® +b = a + b?. Take (1,2),
for instance.

d) It is an equivalence relation.



1. It is reflexive: for any (a,b) € R? we have a = a and, hence (a,b) ~ (a,b).

2. It is symmetric: if (a,b) ~ (c,d) then @ = ¢. But then ¢ = a which says that
(c,d) ~ (a,b).

3. It is transitive: if (a,b) ~ (¢,d) and (¢,d) ~ (e, f) then a = ¢ and ¢ = e which
implies that a = e, hence, (a,b) ~ (e, f).

Here, the equivalence classes can be labeled by a real number A and an equivalence
class corresponding to A consists of all point on the line x = A in the XY-plane (lines
parallel to the y-axis). We can also denote it by [(A, 0)]

e) This is not and equivalence relation as it is not reflexive. For example, it is not true
that for any (a,b) € R? we have ab = a?. Take (1, 2), for instance.

Problem 1.4.16. For any a,b € R, definea ~bifa—b e Z.
a) This is an equivalence relation because:
1. It is reflexive. For any real number a the difference a —a =0 € Z.

2. It is symmetric. If for some a,b the difference a — b is an integer then so is
b—a=—(a—b).

3. It is transitive. Suppose a — b is an integer and b — ¢ is an integer. Then a — ¢ =
a — b+ b — c must also be an integer.

b) The equivalence class of 5 are all integers [5] = Z. The equivalence class of 51 are all
“half-integers”, that is all real numbers obtained from integers by adding 1/2.

c) The quotient set is the half-closed interval [0,1). For any A € [0,1) define

AN=[0+AN={zeR | z=n+ )\, neZ}



