MATH327 – HOMEWORK SOLUTIONS HOMEWORK #1

Section 0: Problems 1,4,5,6,7,8,10,13

Krzysztof Galicki

Problem 0.1.

- a) True, because 4 = 2 + 2 is true and $7 < \sqrt{50}$ is true.
- b) False, because $4 \neq 2 + 2$ is false.
- c) True, because 4 = 2 + 2 is true and $7 < \sqrt{50}$ is true.
- d) True, because $4 \neq 2 + 2$ is false (the hypothesis).
- e) False, because the hypothesis 4 = 2 + 2 is true but the conclusion $7 > \sqrt{50}$ is false.
- f) False, because the area of the circle is not $2\pi r$ and its circumference is not πr^2 .
- g) False, because the hypothesis 2+3=5 is true but the conclusion 5+6=10 is false.

Problem 0.4.

- a) Converse: If a/c is an integer then a/b and b/c are integers. Contrapositive: If a/c is not an integer then either a/b or b/c is not an integer.
- b) Converse: If $x \pm 1$ then $x^2 = 1$. Contrapositive: If $x \neq \pm 1$ then $x^2 \neq 1$.
- c) Converse: If graph G is connected than G is Euclidean. Contrapositive: If graph G is not connected then it is not Euclidean.
- d) Converse: If a = 0 or b = 0 then ab = 0. Contrapositive: If $a \neq 0$ and $b \neq 0$ then $ab \neq 0$.
- e) Converse: If A is a four-sided figure then A is a square. Contrapositive: If A is not a four-sided figure than A is not a square.
- f) Converse: If $a^2 = b^2 + c^2$ then ΔBAC is a right triangle. Contrapositive: If $a^2 \neq b^2 + c^2$ then ΔBAC is not a right triangle.

Problem 0.5.

- a) There exists a continuous function which is not differentiable.
- b) For all $x \in \mathbb{R}$, $2^x \ge 0$.
- c) For all $x \in \mathbb{R}$, there exists $y \in \mathbb{R}$ such that y > x.
- d) For each prime number p, there exists a prime number q such that q > p.
- e) For each positive $x \in \mathbb{R}$, x is a product of primes.
- f) For each positive $x \in \mathbb{R}$, \sqrt{x} is real.

Problem 0.6.

THEOREM A: For all $x \in \mathbb{R}$, there exists $y \in \mathbb{R}$ such that y > x.

Proof. Let $x \in \mathbb{R}$ be arbitrary. Consider y = x + 1. Then y > x.

THEOREM B: There exists $y \in \mathbb{R}$ such that y > x for every $x \in \mathbb{R}$.

Proof: (This statement is false. We will disprove it assuming that it is true via the "proof by contradiction".) Suppose THEOREM B is true. Let y_{max} be such a number. Set $x = y_{\text{max}} + 100$. Then $x > y_{\text{max}}$. The contradiction shows that the statement is false.

Problem 0.7.

THEOREM A: If $a \in \mathbb{Z}$ then either a or a+1 is even.

Proof:

Case 1: Suppose a is even. Then the statement is true.

Case 2: Suppose a is odd. Then a = 2k + 1 for some integer k. But then a + 1 = 2k + 2 = 2(k + 1) and, hence, a + 1 is even. Again, the statement is true in this case.

THEOREM B: If $n \in \mathbb{Z}$ then $n^2 + n$ is even.

Proof:

Case 1: Let n = 2k be even. Then $n^2 + n = 4k^2 + 2k = 2(2k^2 + k)$ is even.

Case 2: Let
$$n = 2k+1$$
 be odd. Then $n^2 + n = (2k+1)^2 + (2k+1) = 4k^2 + 4k + 1 + 2k + 1 = 4k^2 + 6k + 2 = 2(2k^2 + 3k + 1)$ is even.

Problem 0.8.

THEOREM: If $n \in \mathbb{Z}$ then $n^2 - n + 5$ is odd.

Proof:

Case 1: Let n = 2k be even. Then $n^2 - n + 5 = 4k^2 - 2k + 5 = 2(2k^2 - k + 2) + 1$ is odd.

Case 2: Let
$$n = 2k+1$$
 be odd. Then $n^2 - n + 5 = (2k+1)^2 - (2k+1) + 5 = 4k^2 + 2k + 5 = 2(2k^2 + k + 2) + 1$ is odd.

Problem 0.10.

THEOREM: $a^2 - b^2$ is odd if and only if a and b have opposite parity.

Proof:

Case 1: If a = 2k and b = 2l then $a^2 - b^2 = (2k)^2 - (2l)^2 = 2(2k^2 - 2l^2)$ is even.

Case 2: If a = 2k+1 and b = 2l+1 then $a^2-b^2 = (2k+1)^2 - (2l+1)^2 = 2(2k^2+2k-2l^2-2l)$ is even.

Case 3: If a = 2k + 1 and b = 2l then $a^2 - b^2 = (2k + 1)^2 - (2l)^2 = 2(2k^2 + 2k - 2l^2) + 1$ is odd.

Case 4: If a = 2k and b = 2l + 1 then $a^2 - b^2 = (2k)^2 - (2l + 1)^2 = 2(2k^2 - 2l^2 - 2l - 1) + 1$ is odd.

Problem 0.13.

THEOREM: There exists no smallest positive real number.

Proof: Suppose such a number does exist and let us denote it by x_{\min} . Consider $y = \frac{1}{2}x_{\min}$. Then y < x and y is positive. But this contradicts the fact that x_{\min} was the smallest real number.