Problem 1. Let A, B, C be sets. Show that, in general, $(A \setminus B) \setminus C \neq A \setminus (B \setminus C)$.

Solution 1: Observe here that if $B = \emptyset$, $(A \setminus B) \setminus C = A \setminus C$ and $A \setminus (B \setminus C) = A$. So, any example with $B = \emptyset$ and C not disjoint with A will do: say $A = \{1, 2\}, B = \emptyset, C = \{1\}$, for instance.

Solution 2: We could also look for an example by setting B = C. Then $(A \setminus B) \setminus C = A \setminus B$ while $A \setminus (B \setminus C) = A$. If B is not disjoint with A we will always get an example. Take $A = \{1, 2\}, B = C = \{1\}$.

Problem 2. Determine whether or not each of the binary relations \mathcal{R} is reflexive, symmetric, antisymmetric, or transitive:

a)
$$A = \{1, 2, 3, 4\}, \mathcal{R} = \{(1, 1), (1, 2), (2, 1), (3, 4), (4, 3)\}.$$

reflexive: NO, $(2,2) \notin \mathcal{R}$.

symmetric: YES, for each $(a, b) \in \mathcal{R}$ also $(b, a) \in \mathcal{R}$.

antisymmetric: NO, $(2,1) \in \mathcal{R}$ and $(1,2) \in \mathcal{R}$ but $1 \neq 2$.

transitive: NO, $(2,1) \in \mathcal{R}$ and $(1,2) \in \mathcal{R}$ but $(2,2) \notin \mathcal{R}$.

b) $A = \mathbb{R}$, $(a, b) \in \mathcal{R}$ if and only if a - b < 3.

reflexive: YES, $a - a = 0 \le 3$ so $(a, a) \in \mathcal{R}$ for all a.

symmetric: NO, $(-10, -1) \in \mathcal{R}$ but $(-1, -10) \notin \mathcal{R}$.

antisymmetric: NO: if $a - b \le 3$ and $b - a \le 3$ that implies that $-3 \le a - b \le 3$. But this does not mean that a = b. For example, (2,1) and (1,2) are both in \mathcal{R} but $1 \ne 2$.

transitive: NO, clearly, $(4,1) \in \mathcal{R}$ and $(1,0) \in \mathcal{R}$ but $(4,0) \notin \mathcal{R}$.

c) $A = \mathbb{Z}, (a, b) \in \mathcal{R}$ if and only if a + b = 10.

reflexive: NO, $(6,6) \notin \mathcal{R}$, for example.

symmetric: YES, if $(a, b) \in \mathcal{R}$ so is (b, a).

antisymmetric: NO, for example both (4,6) and (6,4) are in \mathcal{R} .

transitive: NO, for example $(11, -1) \in \mathcal{R}$ and $(-1, 11) \in \mathcal{R}$ but $(11, 11) \notin \mathcal{R}$.

d) $A = \mathbb{N}$, $(a, b) \in \mathcal{R}$ if and only if $\frac{a}{b} \in \mathbb{N}$.

reflexive: YES, a/a = 1 for all natural numbers a.

symmetric: NO, $(2,1) \in \mathcal{R}$ but $(1,2) \notin \mathcal{R}$.

antisymmetric: YES, if a/b is natural and b/a is natural that means that a=b.

transitive: YES, if a/b is natural and b/c is natural so is their product, which is simply a/c.

Problem 3. Let $S = \{1, 2, 3, 4, 5\}$, and let $f, g, h: S \to S$ be the function defined by

$$f = \{(1,2), (2,1), (3,3), (4,5), (5,4)\},$$

$$g = \{(1,5), (2,3), (3,1), (4,2), (5,4)\},$$

$$h = \{(1,2), (2,2), (3,2), (4,3), (5,1)\}.$$

- a) $f \circ g = \{(1,4), (2,3), (3,2), (4,1), (5,5)\}, g \circ f = \{(1,3), (2,5), (3,1), (4,4), (5,2)\}.$
- b) $f^{-1} = \{(1,2), (2,1), (3,3), (4,5), (5,4)\}, g^{-1} = \{(1,3), (2,4), (3,2), (4,5), (5,1)\}, h^{-1}$ does not exist as h is not bijective.
- c) $f^2 = \{(1,1), (2,2), (3,3), (4,4), (5,5)\} = id$, $f^3 = f$, $f^4 = id$. What is $f^{2k} = id$, and $f^{2k+1} = f$.

Problem 4. In each case determine if the function is injective (1-1) and/or surjective (onto):

- a) $f: \mathbb{N} \to \mathbb{N}$, f(n) = 3n: injective but not surjective because f(n) = 3n = 1 has no solutions in natural numbers.
- b) $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x: injective and surjective.
- c) $f: \mathbb{R}^2 \to \mathbb{R}$, f(x,y) = x: surjective but not injective as f(1,0) = f(1,1) = 1.
- d) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^4 x^2$: not injective as f(0) = f(1) = 0. Not surjective as $x^4 x^2 = x^2(x^2 1) > -1$ and hence f(x) = -1 has no solutions. To see that take $x^4 x^2 = -1$. This means that $(x^2 1)^2 + x^2 = 0$. But this is impossible.

Problem 5.

- a) Write the number 10001 in base b = 2: $10001 = (10011100010001)_2$.
- b) Let $x=(10001)_3$ and $y=(111)_3$. Compute the sum x+y and the product $x\cdot y$ in base b=3: As $x=3^4+1=82$ and $y=3^2+3+1=13$. We have

$$x + y = 95 = 3^4 + 3^2 + 3 + 2 = (10112)_3,$$

 $xy = 1066 = 3^6 + 3^5 + 3^4 + 3^2 + 3 + 1 = (1110111)_3.$

BONUS PROBLEM. Suppose $m, n \in \mathbb{Z}$ and $n^2 + 1 = 2m$. Prove that m is a sum of two squares (i.e., $m = p^2 + q^2$ where p, q are some integers).

Proof: Note that n has to be odd for $n^2 + 1$ to be even. Take n = 2k + 1. We get $(2k+1)^2 + 1 = 2m$ which means that $4k^2 + 4k + 2 = 2m$. let us divide by 2:

$$m = 2k^2 + 2k + 1 = k^2 + (k^2 + 2k + 1) = k^2 + (k+1)^2$$