MATHEMATICS 327

NAME:		
1,		
2		
3		
0,		
4		
5		
0		
BONUS PROBLEM		
DONOS FRODLEM		
ТОТАТ		

Problem 1. Let A,B,C be sets. Show that, in general,

$$(A \setminus B) \setminus C \neq A \setminus (B \setminus C).$$

Hint: Give any example when this equality is violated.

Problem 2. Determine whether or not each of the binary relations \mathcal{R} is reflexive, symmetric, antisymmetric, or transitive:
a) $A = \{1, 2, 3, 4\}, \mathcal{R} = \{(1, 1), (1, 2), (2, 1), (3, 4), (4, 3)\}.$
reflexive:
symmetric:
antisymmetric:
transitive:
b) $A = \mathbb{R}$, $(a, b) \in \mathcal{R}$ if and only if $a - b \le 3$.
reflexive:
symmetric:
antisymmetric:
transitive:

c) $A = \mathbb{Z}$, $(a, b) \in \mathcal{R}$ if and only if $a + b = 10$.
reflexive:
symmetric:
antisymmetric:
transitive:
d) $A = \mathbb{N}$, $(a, b) \in \mathcal{R}$ if and only if $\frac{a}{b} \in \mathbb{N}$.
reflexive:
symmetric:
antisymmetric:

transitive:

Problem 3. Let $S = \{1, 2, 3, 4, 5\}$, and let $f, g, h: S \to S$ be the function defined by

$$f = \{(1,2), (2,1), (3,3), (4,5), (5,4)\},\$$

$$g = \{(1,5), (2,3), (3,1), (4,2), (5,4)\},\$$

$$h = \{(1,2), (2,2), (3,2), (4,3), (5,1)\}.$$

a) Find $f \circ g$ and $g \circ f$.

b) Find f^{-1} , g^{-1} , and h^{-1} (if they exist).

c) Find f^2 , f^3 , f^4 . What is f^n ? (Here $f^2 = f \circ f, f^3 = f \circ f \circ f, ...)$

Problem 4. In each case determine if the function is injective (1-1) and/or surjective (onto):

a)
$$f: \mathbb{N} \to \mathbb{N}$$
, $f(n) = 3n$:

b)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 3x$:

c)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = x$:

d)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^4 - x^2$:

Problem 5.

a) Write the number 10001 in base b = 2.

b) Let $x = (10001)_3$ and $y = (111)_3$. Compute the sum x + y and the product $x \cdot y$ in base b = 3.

BONUS PROBLEM. Suppose $m, n \in \mathbb{Z}$ and $n^2 + 1 = 2m$. Prove that m is a sum of two squares (i.e., $m = p^2 + q^2$ where p, q are some integers).